Instructions for use

Infinity Acute Care System

WARNING
To properly use this medical device, read and comply with these instructions for use.

Monitoring applications
Software VG4.n
Typographical conventions

1 Consecutive numbers indicate steps of action, with the numbering restarting with "1" for each new sequence of actions.

● Bullet points indicate individual actions or different options for action.
 – Dashes indicate the listing of data, options, or objects.
(A) Letters in parentheses refer to elements in the related illustration.
(A) Letters in illustrations denote elements referred to in the text.

Any text shown on the screen and any labeling on the device are printed in bold and italics, for example, Alarms, or Trends/Data....

The "greater than" symbol > indicates the navigation path in a dialog window, for example, System setup... > Screen setup > General settings. In this example, System setup... represents the dialog window title, Screen setup represents a horizontally aligned tab, and General settings a vertically aligned tab.

Screen reproductions

The reproductions of screen content in the instructions for use can differ from the content actually shown on the screen.
Trademarks

- Acute Care System™
- Babylog®
- DrägerService®
- Evita®
- Hemo4®
- Hemo2®
- Infinity®
- Innovian®
- MCable™
- Medical Cockpit®
- MegaCare™
- MPod®
- PatientWatch™
- TruST®
- MonoLead®
- Perseus®
- Apollo®
- Zeus®
- Primus®

are trademarks of Dräger.

- Masimo®
- Masimo® SET® (Signal Extraction Technology)
- Masimo® rainbow® SET®
- PVI®
- SET®
- SpCO®
- SpHb®
- SpMet®
- SpOCTM
- Pulse CO-Oximeter™

- M-LNCS™

are trademarks of Masimo Corporation.

- Nellcor™
- OxiMax®
- SatSeconds®
- BIS VISTA™

are trademarks of Covidien.

- Edwards Vigilance®
- Edwards Vigileo®

are trademarks of Edwards Lifesciences, LLC.

- Compliance™

is a trademark of Cardinal Health, Inc.

- Dismozun® pur

is a trademark of BODE Chemie GmbH.

- Sporox II®

is a trademark of Sultan Healthcare, Inc.

- SERVO-i®

is a trademark of Maquet, Inc.

- TOFSCAN™

is a trademark of IDMed

- TOF-Watch®

is a trademark of Merck & Co, Inc.

All devices referenced in these instructions for use may not be approved for sale in all countries. Please check with your local Dräger representative.
Safety information definitions

WARNING
A WARNING statement provides important information about a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION
A CAUTION statement provides important information about a potentially hazardous situation which, if not avoided, may result in minor or moderate injury to the user or patient or in damage to the medical device or other property.

NOTE
A NOTE provides additional information intended to avoid inconvenience during operation.

Abbreviations and symbols

For explanations, refer to sections "Abbreviations" and "Device symbols" in chapter "System overview".

Definition of target groups

For this product, users, service personnel, and experts are defined as target groups.

These target groups must have received instruction in the use of the product and must have the necessary training and knowledge to use, install, reprocess, maintain, or repair the product.

The product must be used, installed, reprocessed, maintained, or repaired exclusively by defined target groups.

Users
Users are persons who use the product in accordance with its intended use.

Service personnel
Service personnel are persons who are responsible for the maintenance of the product. Service personnel must be trained in the maintenance of medical devices and install, reprocess, and maintain the product.

Experts
Experts are persons who perform repair or complex maintenance work on the product. Experts must have the necessary knowledge and experience with complex maintenance work on the product.
Contents

Definition of target groups .. 4

For your safety and that of your patients 11
General safety information 16

Application .. 19
Intended use – Infinity Acute Care System – Monitoring Applications 20

System overview .. 21
Overview ... 22
Infinity Medical Cockpit ... 22
Infinity PS250 power supply (PS250) 23
Infinity P250 power supply (P2500) 23
Infinity M540 patient monitor (M540) 24
Infinity M500 docking station (M500) 24
Additional hardware .. 25
Device symbols .. 27
Abbreviations ... 29

Operating concept .. 35
Overview ... 36
The IACS components ... 37
M540 and Cockpit communication 38
Communicating with the Infinity network 40
Remote control and remote view 43
Communication management 45
Loss of power ... 47
Locked options ... 48
Secondary display .. 49
Export protocol .. 49
User interface ... 50
Header bar .. 51
Monitoring area .. 52
Supported banners .. 54
Main menu bar and quick access toolbar 56
Filtering the parameter content 58
Auto and manual display modes 58
Auto view setup toolbar ... 59
Customizing the display ... 59
Parameter priority .. 64
Views ... 65
Profiles/status ... 66
Managing profiles and views 76
Standby mode ... 77
Privacy mode ... 78

Assembly and preparation 79
Assembly overview ... 80
Docking/undocking the M540 81
Locking/unlocking the M540 82
Connecting the system cables 83
Mounting the Infinity MCable – Masimo SET/Masimo rainbow SET/ Nellcor OxiMax . 85

Getting started ... 87
Overview ... 88
Turning the IACS on/off ... 88
Viewing demographic data 89
Admitting a patient ... 90
Discharging a patient ... 91
Patient categories .. 92

Alarms ... 95
Overview of alarms ... 96
Alarm priorities .. 97
Alarm processing .. 97
Activating or deactivating alarm validation 99
Visual alarm signals .. 100
Acoustic alarm signals ... 102
Testing visual and acoustic alarm signals 104
Viewing current alarm messages 104
Special alarm behavior .. 105
Pre-silencing alarms ... 107
Pausing acoustic alarm signals (audio pause) 109
Activating or deactivating acoustic alarm signals 111
Pausing alarm monitoring temporarily 111
Activating or deactivating alarm monitoring 112
Configuring the alarm settings for a patient 113
Configuring the alarm setup for an individual parameter ... 115
Configuring the alarm setup for multiple parameters ... 117
Configuring the alarm message behavior 119
Configuring the arrhythmia alarm setup 122
Alarm setup for ST .. 123

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Contents

Auto setting all alarm limits .. 126
Alarm history and stored events 127
Viewing a snapshot of a single event 129
Viewing current alarms .. 130
Configuring alarm settings temporarily 130
Configuring the SpO2 alarm priority 131
Remote alarm control ... 132
External device disconnection alarm 133
The Code function ... 133
Alarm ranges and defaults 134

Calculations .. 143
Overview .. 144
Accessing the calculation functions 145
Viewing the calculation results 147
Lab data .. 148
Calculation equations ... 149
Drug calculations ... 153
Accessing the drug calculation functions 153
Customized drug list .. 154
Drug calculator equations .. 156

Trends/data dialog windows 159
Overview .. 160
Trending behavior .. 160
Trend graphs .. 162
Interacting with the trend graphs pages 164
Recruitment page ... 167
Interacting with the Recruitment page 168
Trend table .. 170
Interacting with the trend table 172
Mini-trends .. 174
Data review pages .. 175
Reports tab ... 177

ECG, arrhythmia, and ST segment 179
Overview of ECG and heart rate monitoring 181
ECG precautions .. 182
Connecting the 3-, 5-, 6-lead wire sets for ECG monitoring .. 183
Connecting the lead wire sets for 12-lead monitoring .. 184
Connecting the lead wires for neonatal monitoring 185
Patient preparation for ECG monitoring 186
ECG display .. 187
ECG colors ... 189

Electrode placement .. 190
12-lead monitoring .. 193
Accessing the ECG functions 193
ECG parameter setup functions 194
Monitoring paced patients 197
Pacemaker precautions .. 198
Optimizing pacer processing 200
Arrhythmia monitoring overview 200
Selecting arrhythmia leads 201
Arrhythmia processing .. 202
Arrhythmia modes .. 202
Arrhythmia display .. 204
Accessing the arrhythmia functions 206
Arrhythmia parameter setup functions 206
Monitoring ST overview .. 207
Standard ST monitoring .. 207
TruST 12-lead monitoring 208
12-lead ST monitoring .. 208
Connecting lead wire sets for ST monitoring 208
ST display ... 209
Reviewing ST complexes .. 210
ST measuring points .. 212
ST reference .. 213
ST alarm settings ... 214
Accessing the ST settings .. 214
ST setup functions .. 215
Learning/relearning QRS pattern 217

Impedance respiration (AFi) 219
Overview of respiration monitoring 220
Respiration precautions .. 220
Connecting the 3-, 5-, 6-lead wire sets for respiration monitoring .. 221
Connecting the lead wire sets for 12-lead monitoring .. 222
Connecting the lead wires for neonatal monitoring 223
Patient preparation for respiration monitoring 224
Respiration display .. 226
Adjusting the detection threshold and activating the respiration marker 227
Respiration measuring modes 227
Accessing the respiration settings 228
Respiration parameter setup functions 228

Viewing current alarms ... 130
Contents

SpO2 and Pulse CO-Ox monitoring with Masimo SET MCable .. 231
- Overview of SpO2 and Pulse CO-Ox monitoring ... 232
- SpO2 and Pulse CO-Ox precautions .. 234
- Connecting the Masimo SET MCable ... 236
- Connecting the Masimo rainbow SET MCable ... 237
- Patient preparation .. 238
- SpO2 and Pulse CO-Ox display ... 239
- Reviewing the SpO2 and Pulse CO-Ox parameters ... 242
- Accessing the SpO2 settings ... 243
- SpO2 parameter setup functions .. 244
- Masimo rainbow SET Pulse CO-Ox parameter setup functions .. 246
- Password-protected Masimo rainbow SET setup functions ... 249

SpO2 and pulse rate with Nellcor OxiMax MCable .. 251
- Overview of SpO2 monitoring .. 252
- SpO2 precautions .. 253
- Connecting the Nellcor OxiMax MCable .. 254
- Patient preparation for SpO2 monitoring .. 255
- SpO2 display .. 257
- Accessing the SpO2 settings ... 258
- SpO2 parameter setup functions .. 258

Temperature ... 261
- Overview of temperature monitoring ... 262
- Connecting the temperature sensors .. 262
- Temperature display .. 265
- Accessing the temperature settings ... 266
- Temperature parameter setup functions ... 266

Non-invasive blood pressure (NIBP) ... 267
- Overview of non-invasive blood pressure monitoring .. 268
- Non-invasive blood pressure precautions .. 269
- Connecting the non-invasive blood pressure hose and cuff .. 270
- Patient preparation for non-invasive blood pressure monitoring 271
- Non-invasive blood pressure display .. 271
- Non-invasive blood pressure measurement modes .. 274
- Venous stasis .. 277
- Accessing the non-invasive blood pressure settings ... 278
- Non-invasive blood pressure parameter setup functions .. 278

Invasive blood pressure (IBP) .. 279
- Overview of invasive blood pressure monitoring ... 280
- Invasive blood pressure precautions .. 282
- Connecting the Hemo4 pod and Hemo2 pod ... 283
- Connecting the MPod – QuadHemo .. 284
- Connecting the Dual Hemo MCable ... 285
- Patient preparation for invasive blood pressure monitoring 286
- Invasive blood pressure display .. 286
- Labeling invasive blood pressure channels .. 288
- Standard labels ... 289
- Pressure label conflicts ... 290
- Zeroing an invasive blood pressure transducer .. 290
- Pulmonary wedge pressure ... 293
- Starting wedge measurements from the pods .. 294
- Accessing the invasive blood pressure settings .. 297
- Invasive blood pressure parameter setup functions .. 297

Cardiac output (C.O.) ... 299
- Overview of cardiac output monitoring ... 300
- C.O. precautions ... 300
- Connecting the cardiac output hardware .. 301
- Patient preparation for cardiac output monitoring .. 303
- Cardiac output display .. 304
- Cardiac output computation constant ... 305
- Cardiac output measuring modes .. 307
- Saving the cardiac output value .. 310
- Reviewing the cardiac output averages .. 311
- Accessing the cardiac output settings ... 312
- Cardiac output parameter setup functions .. 312

Carbon dioxide concentrations (CO2) ... 315
- Overview of CO2 monitoring ... 316
- CO2 precautions .. 317
- Connecting the sensor .. 318
- Patient preparation for CO2 monitoring .. 319
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Reports/recordings</td>
<td>439</td>
</tr>
<tr>
<td>Overview</td>
<td>440</td>
</tr>
<tr>
<td>R50N recorder</td>
<td>440</td>
</tr>
<tr>
<td>Timed recordings</td>
<td>441</td>
</tr>
<tr>
<td>Continuous recordings</td>
<td>443</td>
</tr>
<tr>
<td>Requesting recordings</td>
<td>443</td>
</tr>
<tr>
<td>Available reports</td>
<td>444</td>
</tr>
<tr>
<td>Printing reports</td>
<td>444</td>
</tr>
<tr>
<td>Configuring a case summary report</td>
<td>448</td>
</tr>
<tr>
<td>IT applications (options)</td>
<td>449</td>
</tr>
<tr>
<td>Overview</td>
<td>450</td>
</tr>
<tr>
<td>Configuring IT tabs</td>
<td>450</td>
</tr>
<tr>
<td>Accessing an IT tab</td>
<td>451</td>
</tr>
<tr>
<td>Supported IT applications</td>
<td>452</td>
</tr>
<tr>
<td>Connecting to the network</td>
<td>453</td>
</tr>
<tr>
<td>Problem solving</td>
<td>455</td>
</tr>
<tr>
<td>Overview</td>
<td>456</td>
</tr>
<tr>
<td>Device communication messages</td>
<td>456</td>
</tr>
<tr>
<td>Banners</td>
<td>458</td>
</tr>
<tr>
<td>ECG</td>
<td>461</td>
</tr>
<tr>
<td>ST</td>
<td>464</td>
</tr>
<tr>
<td>ECG</td>
<td>461</td>
</tr>
<tr>
<td>ST</td>
<td>464</td>
</tr>
<tr>
<td>ARR</td>
<td>465</td>
</tr>
<tr>
<td>Respiration (RRi)</td>
<td>467</td>
</tr>
<tr>
<td>SpO2</td>
<td>470</td>
</tr>
<tr>
<td>Non-invasive blood pressure (NIBP)</td>
<td>475</td>
</tr>
<tr>
<td>Temperature</td>
<td>478</td>
</tr>
<tr>
<td>Invasive blood pressure (IBP)</td>
<td>480</td>
</tr>
<tr>
<td>Cardiac Output (C.O.)</td>
<td>484</td>
</tr>
<tr>
<td>CO2</td>
<td>487</td>
</tr>
<tr>
<td>Recording status messages</td>
<td>491</td>
</tr>
<tr>
<td>Cleaning and disinfection</td>
<td>493</td>
</tr>
<tr>
<td>General precautions</td>
<td>494</td>
</tr>
<tr>
<td>Approved agents</td>
<td>495</td>
</tr>
<tr>
<td>PS250/P2500 Cleaning</td>
<td>495</td>
</tr>
<tr>
<td>Maintenance</td>
<td>497</td>
</tr>
<tr>
<td>Overview</td>
<td>498</td>
</tr>
<tr>
<td>Inspection</td>
<td>499</td>
</tr>
<tr>
<td>Visual inspection</td>
<td>499</td>
</tr>
<tr>
<td>Inspection / safety checks</td>
<td>500</td>
</tr>
<tr>
<td>Preventive maintenance</td>
<td>502</td>
</tr>
<tr>
<td>Disposal</td>
<td>503</td>
</tr>
<tr>
<td>EU Directive 2002/96/EC (WEEE)</td>
<td>503</td>
</tr>
<tr>
<td>Technical data</td>
<td>505</td>
</tr>
<tr>
<td>Overview</td>
<td>506</td>
</tr>
<tr>
<td>Infinity PS250 power supply power supply</td>
<td>506</td>
</tr>
<tr>
<td>Infinity P2500</td>
<td>508</td>
</tr>
<tr>
<td>Infinity MCable – Nurse call</td>
<td>510</td>
</tr>
<tr>
<td>Infinity R50N</td>
<td>511</td>
</tr>
<tr>
<td>Sound pressure</td>
<td>512</td>
</tr>
<tr>
<td>Secondary display</td>
<td>512</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>512</td>
</tr>
<tr>
<td>Index</td>
<td>517</td>
</tr>
</tbody>
</table>

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 9
This page intentionally left blank.
For your safety and that of your patients

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strictly follow these instructions for use</td>
<td>12</td>
</tr>
<tr>
<td>Storing the instructions for use</td>
<td>12</td>
</tr>
<tr>
<td>Training</td>
<td>12</td>
</tr>
<tr>
<td>Maintenance</td>
<td>12</td>
</tr>
<tr>
<td>Accessories</td>
<td>12</td>
</tr>
<tr>
<td>Installing accessories</td>
<td>13</td>
</tr>
<tr>
<td>Sterile accessories</td>
<td>13</td>
</tr>
<tr>
<td>Restriction of distribution</td>
<td>13</td>
</tr>
<tr>
<td>Restrictions for use</td>
<td>13</td>
</tr>
<tr>
<td>Connected devices</td>
<td>13</td>
</tr>
<tr>
<td>Safe connection with other electrical equipment</td>
<td>13</td>
</tr>
<tr>
<td>Electrical safety</td>
<td>14</td>
</tr>
<tr>
<td>Device combinations</td>
<td>14</td>
</tr>
<tr>
<td>Connection to hospital network</td>
<td>15</td>
</tr>
<tr>
<td>Patient safety</td>
<td>15</td>
</tr>
<tr>
<td>Patient monitoring</td>
<td>15</td>
</tr>
<tr>
<td>General safety information</td>
<td>16</td>
</tr>
<tr>
<td>Not for use in areas of explosion hazard</td>
<td>17</td>
</tr>
<tr>
<td>Information on electromagnetic compatibility</td>
<td>17</td>
</tr>
<tr>
<td>Site of operation</td>
<td>17</td>
</tr>
<tr>
<td>Defibrillator precautions</td>
<td>18</td>
</tr>
<tr>
<td>Electrosurgery</td>
<td>18</td>
</tr>
<tr>
<td>Virus protection</td>
<td>18</td>
</tr>
</tbody>
</table>
Strictly follow these instructions for use

NOTE
The Infinity Acute Care System provides the following additional instructions for use:

- **Infinity Acute Care System – Infinity M540 patient monitor (describes the M540 user interface)**
- **Infinity Acute Care System – Medical Cockpit (describes the hardware of the Cockpit)**
- **Infinity Acute Care System – Monitoring accessories (describes all of the IACS accessories).**

Please refer to these additional instructions for use for device-specific information.

WARNING
Risk of incorrect operation and use.

Any use of the medical device requires full understanding and strict observation of all sections of these instructions for use. The medical device must only be used for the purpose specified under 'Application' and in conjunction with appropriate patient monitoring.

Strictly observe all WARNING and CAUTION statements throughout these instructions for use and all statements on medical device labels. Failure to observe these safety information statements constitutes a use of the medical device that is inconsistent with its intended use.

Storing the instructions for use

WARNING
Risk of incorrect use.

Instructions for use must be kept accessible for the user.

Training

Training for users is available from the responsible Dräger organization, see www.draeger.com.

Maintenance

WARNING
Risk of medical device failure and of patient injury.

The medical device must be inspected and serviced regularly by service personnel. Repair and complex maintenance carried out on the medical device must be performed by experts.

If the above is not complied with, medical device failure and patient injury may occur. Observe the chapter "Maintenance".

Dräger recommends that a service contract is obtained with DrägerService and that all repairs are performed by DrägerService. For maintenance Dräger recommends the use of authentic Dräger repair parts.

Accessories

WARNING
Risk due to incompatible accessories.

Dräger has only tested the compatibility of accessories listed in the current list of accessories. If other accessories are used, there is a risk of patient injury due to medical device failure. Dräger recommends that the medical device is only used with accessories listed in the current list of accessories.
Installing accessories

CAUTION
Risk of device failure
Install accessories to the basic device in accordance with the instructions for use of the basic device. Make sure that there is a safe connection to the basic device.
Strictly observe instructions for use and assembly instructions.

Sterile accessories

CAUTION
Risk of medical device failure and of patient injury.
Do not use sterile-packaged accessories if the packaging has been opened, is damaged or if there are other signs of non-sterility. Single-use accessories must not be reused, reprocessed, or resterilized.

Restriction of distribution

Federal Law (U.S.) restricts this device to sale by or on the order of a physician.

Restrictions for use

CAUTION
Device for use in health care environments only and exclusively by persons as defined in the target groups (see “Definition of target groups” on page 4).

Connected devices

WARNING
Risk of electric shock and of device malfunction.
Any connected devices or device combinations not complying with the requirements mentioned in these instructions for use can compromise the correct functioning of the medical device and lead to electric shock. Before operating the medical device, strictly comply with the instructions for use of all connected devices and device combinations.

Safe connection with other electrical equipment

WARNING
To avoid electric shock, the equipment should only be connected to a power source that is properly grounded (protective earth ground).

WARNING
Risk of patient injury.
Electrical connections to equipment which are not listed in these instructions for use should only be made following consultation with the respective manufacturers. Equipment malfunction may result with the risk of patient injury.
Electrical safety

WARNING

Because of the danger of electric shock, never remove the cover of a device while it is in use or plugged into a power socket.

CAUTION

Connect the PS250 or the P2500 with an attached power cord only to hospital-grade electrical power sockets to make sure that it is properly grounded.

CAUTION

To avoid injuring the patient, do not touch any connector or mounting screw on the device when you are touching the patient. Do not allow the conductive parts of electrodes and cables to contact other conductive parts or the ground.

Device combinations

This device can be operated in combination with other Dräger devices or with devices from other manufacturers. Observe the accompanying documents of the individual devices.

If a device combination is not approved by Dräger, the safety and the functional state of the individual devices can be compromised. The operating organization must ensure that the device combination complies with the applicable editions of the relevant standards for medical devices.

Device combinations approved by Dräger meet the requirements of the following standards:

IEC 60601 3rd Edition Requirements

- IEC 60601-1: general requirements for safety, device combinations, software-controlled functions
- IEC 60601-1-2: electromagnetic compatibility
- IEC 60601-1-8 (alarm systems),

or

IEC 60601 2nd Edition Requirements

- IEC 60601-1, 2nd edition (general requirements for safety)
- IEC 60601-1-1 (device combinations)
- IEC 60601-1-2 (electromagnetic compatibility)
- IEC 60601-1-4 (software-controlled functions)
- IEC 60601-1-8 (alarm systems)

If a device combination is not approved by Dräger, proper operation of the devices can be compromised.

The operator must ensure that the device combination meets the applicable standards.

Strictly observe instructions for use and assembly instructions of all connected devices.
Connection to hospital network

Many medical devices manufactured by Dräger use networks to transmit patient data in real-time and to notify clinical users of alarm conditions. Hospitals should refer to IEC 80001-1 before attempting to connect such medical devices to their IT networks.

Patient safety

The design of the medical device, the accompanying documentation, and the labeling on the medical device are based on the assumption that the purchase and the use of the medical device are restricted to persons familiar with the most important inherent characteristics of the medical device. Instructions and WARNING and CAUTION statements are therefore largely limited to the specifics of the Dräger medical device.

These instructions for use do not contain any information on the following points:

- Risks that are obvious to users
- Consequences of obvious improper use of the medical device
- Potentially negative effects on patients with different underlying diseases

Medical device modification or misuse can be dangerous.

Patient monitoring

The user of the medical device is responsible for choosing a suitable patient monitoring system that provides appropriate information on medical device performance and patient condition.

Patient safety may be achieved by a wide variety of means ranging from electronic surveillance of medical device performance and patient condition to direct observation of clinical signs.

The responsibility for selecting the best level of patient monitoring lies solely with the user of the medical device.
For your safety and that of your patients

General safety information

The following WARNING and CAUTION statements apply to general operation of the medical device.

WARNING and CAUTION statements specific to subsystems or particular features of the medical device appear in the respective sections of these instructions for use or in the instructions for use of another product being used with this medical device.

WARNING
Risk of explosion and of chemical burns.
Improper handling of batteries can result in explosions and chemical burns.
Do not throw batteries into fire. Do not force batteries open.

Observe the applicable laws and regulations for battery disposal.

WARNING
To avoid electric shock, inspect all cables before use. Never use cables that appear cracked, worn, or damaged in any way (doing so may compromise performance or put the patient at risk).

WARNING
Do not cover the device with blankets or bed sheets. To prevent burns to the patient, avoid direct contact between external surfaces and the patient.

CAUTION
To avoid injuring the patient, disconnect all sensors that will not be used during transport, before moving the patient.

CAUTION
Read all cleaning instructions (for example, originating from the disinfectant manufacturer and the hospital) carefully before cleaning the device. Refer to the chapter entitled “Cleaning and disinfection” on page 493 for device-specific cleaning instructions. Moisture may damage the circuits, compromise critical performance and present a safety risk.

WARNING
Dräger recommends using the Infinity Acute Care System or the M540 (if on wireless transport) for primary diagnosis and the (ICS) Infinity CentralStation for patient viewing only.

For countries subject to the EU directive 2002/96/EC
This device is subject to EU directive 2002/96/EC (WEEE). In order to comply with its registration according to this directive, this device may not be disposed of at municipal collection points for waste of electrical and electronic equipment. Dräger has authorized a company to collect and dispose of this device.

To initiate collection or for further information, visit Dräger on the Internet at www.draeger.com. Use the Search function with the keyword "WEEE" to find the relevant information. If access to the Dräger website is not possible, contact the local Dräger organization.
Not for use in areas of explosion hazard

WARNING
Risk of explosion
This medical device is neither approved nor certified for use in areas where oxygen concentrations greater than 25% (combustible or explosive gas mixtures) are likely to occur.

Information on electromagnetic compatibility

General information on electromagnetic compatibility (EMC) according to international EMC standard IEC 60601-1-2:

Medical electrical equipment is subject to special precautionary measures concerning electromagnetic compatibility (EMC) and must be installed and put into operation in accordance with the EMC information provided on page 512.

Portable and mobile radio frequency communications equipment can affect medical electrical equipment.

WARNING
Do not connect connectors with an ESD warning symbol and do not touch their pins without implementing ESD protective measures. Such protective measures may include antistatic clothing and shoes, touching a potential equalization pin before and during connection of the pins, or using electrically insulating and antistatic gloves. All users concerned must be instructed in these ESD protective measures.

Site of operation

Only use devices (monitor, MPod, MCable, and accessories) in areas that meet the environmental requirements outlined in the technical data section.

WARNING
To avoid interfering with device operation, do not operate devices (monitor, MPod, MCable, and accessories) near equipment that emits microwave or other high-frequency emissions. For recommended separation distances, see page 516.

WARNING
Make sure that the device is properly mounted and secured to prevent injury. Make sure the requirements for maximum load and slope of floor are met. Consult the documentation of the mounting manufacturer for detailed information.

WARNING
To minimize the risk of patient strangulation, carefully position and secure sensor cables. Also position the sensor cables to minimize inductive loops.

WARNING
To avoid patient injury as the result of a falling monitor when using a rolling stand, universal bed hook, or handle hook mount, do not apply excessive force to the monitor or mount when entering or exiting elevators or passing over thresholds and other uneven surfaces.

CAUTION
To prevent overheating, do not place the device in direct sunlight or near radiant heaters.

CAUTION
After extended exposure in a cold environment, acclimate the device carefully so that condensation does not form on the electronic parts and damage the device.

CAUTION
To avoid damaging the touch-sensitive screen, do not allow sharp instruments to touch the front panel of the devices.
For your safety and that of your patients

Defibrillator precautions

The IACS and the peripheral devices are protected against high-frequency interference from defibrillators and electrosurgical units and against 50-Hz and 60-Hz power line interference.

WARNING

To avoid electrical shock, always remove accessories that are not resistant to defibrillation before defibrillating a patient.

CAUTION

To prevent burns and electric shock due to rerouting of electrical current through electrodes, do not position the defibrillator pads near any electrodes or sensors.

CAUTION

Only defibrillate across the chest.

CAUTION

To protect the patient during defibrillation and to ensure accurate ECG information, use only ECG electrodes and cables specified by Dräger. Removal of applied parts that are not rated defibrillation-proof such as disposable SpO2 sensors may be required to prevent sensor breakdown and energy shunting.

Electrosurgery

Observe the following precautions during electrosurgery to reduce electrosurgical unit (ESU) interference and improve operator and patient safety.

WARNING

For better performance and to reduce the hazard of burns during surgery, always use accessories designed for ESU environments.

WARNING

To reduce the hazard of burns during electrosurgery, keep the sensor or transducer (ECG, pressure, SpO2) and their associated cables away from the surgical site, the ESU return electrode, and earth ground.

NOTE

Cover internally placed reusable temperature sensors with temperature probe sheaths.

Virus protection

The IACS does not have virus protection software and relies therefore on the firewall of your institution to prevent access to infected files. While setting up IT applications to access web sites, evaluate each web site with regard to possible virus infection.

CAUTION

To avoid short-circuiting and otherwise damaging the device, Dräger recommends that no fluids come in contact with the IACS devices when they are connected to a power socket. If fluids are accidentally spilled on the equipment, remove the affected device from service as soon as possible and have technical personnel verify that patient safety is not compromised.
Application

Intended use – Infinity Acute Care System – Monitoring Applications 20
Indications for use 20
Intended use – Infinity Acute Care System – Monitoring Applications

The IACS is intended for multi-parameter, physiologic patient monitoring of adult, pediatric, and neonatal patients in environments where patient care is provided by trained health care professionals.

The IACS obtains the physiologic, multi-parameter data from the connection to the M540 monitor and optional medical devices and displays. The transfer of this data is accomplished by the Infinity network.

The IACS and any connected optional hardware are not intended for use in the following hospital environments:

- Hyperbaric chambers
- Environments containing MRI equipment

Indications for use

The M540 monitors the following parameters:

- Heart rate
- Arrhythmia (adult and pediatric patients only)
- 12-lead ECG monitoring
- 12-lead ECG monitoring including TruST (adult and pediatric patients only)
- ST segment analysis (adult and pediatric patients only)
- 12-lead ST segment analysis (adult and pediatric patients only)
- Apnea
- Respiration rate
- Invasive blood pressure
- Non-invasive blood pressure
- Temperature
- Cardiac output (adult and pediatric patients only)
- Arterial oxygen saturation – SpO2
- Pulse rate
- Perfusion index – PI
- Total hemoglobin – SpHb, (adult and pediatric patients only)
- Total oxygen content – SpOC, (adult and pediatric patients only)
- Carboxyhemoglobin saturation – SpCO
- Methemoglobin saturation – SpMet
- Pleth variability index – PVI
- Mainstream etCO2
System overview

Overview ... 22
Infinity Medical Cockpit 22
Infinity PS250 power supply (PS250) 23
Infinity P2500 power supply (P2500) 23
Infinity M540 patient monitor (M540) 24
Infinity M500 docking station (M500) 24
M500 front panel 24
M500 back panel 25
Additional hardware 25
Device symbols 27
Abbreviations 29
Overview

These instructions for use describe the Cockpit (Medical Cockpit), the primary display and user interface of the Infinity Acute Care System – Monitoring Applications – M540 patient monitor (IACS). Specifically, these instructions for use describe the setup tasks and features available on the Cockpit. For detailed information on the M540 patient monitor, refer to the instructions for use Infinity Acute Care System – Infinity M540.

Some terms used in these instructions for use:
- Cockpit – refers to the Infinity C700 Medical Cockpit or the Infinity C500 Medical Cockpit
- M540 – refers to the Infinity M540 transport component and patient connection point of the IACS.
- M500 – refers to the Infinity M500 docking station that secures the M540, provides communication between the M540 and the Cockpit, and charges the battery in the M540.
- PS250 – refers to the Infinity PS250 power supply Com Hub (power supply)
- P2500 – refers to the Infinity P2500
- Docking the M540 – refers to placing the M540 on the M500.
- Undocking the M540 – refers to removing the M540 from the M500 for patient transport.

The following diagram shows the basic components of the IACS. In addition, you can connect various hardware to expand the viewing and monitoring capabilities (see "Additional hardware" on page 25).

![Diagram showing the basic components of the IACS]

Infinity Medical Cockpit

The Infinity Medical Cockpit (referred to in this IFU as Cockpit) is the primary display and user interface for the IACS and is available in the following sizes:
- C500 – 43 cm (17 in) wide screen
- C700 – 50 cm (20.1 in) wide screen

For detailed description regarding the front and back panel of the Cockpit, refer to the instructions for use Infinity Acute Care System – Infinity Medical Cockpit.

NOTE

On the second-generation Cockpit, the yellow key on the front panel has changed to .
System overview

Infinity PS250 power supply (PS250)

The following diagram shows the bottom of the PS250.

A Infinity network connectors
B Nurse call connector
C Export protocol connector
D Power cord connection
E Two interchangeable system cable connectors – one for the M540, one for the Cockpit
F Network connection LEDs

The front panel of the PS250 has the following two LEDs:
- Power mains – lights up green when the device is connected to AC power.
- Battery indicator – yellow LED that lights up briefly during startup or fault conditions such as a faulty battery.

Infinity P2500 power supply (P2500)

The following diagram shows the bottom of the P2500.

A Two interchangeable system cable connectors – one for the M540, one for the Cockpit
B Power cord connection
C Infinity network connector
D Nurse call connector
E Export protocol connector

The front panel of the P2500 has the following two LEDs:
- Power mains – lights up green when the device is connected to AC power.
- Battery indicator – yellow LED that lights up briefly during startup or fault conditions such as a faulty battery.
System overview

Infinity M540 patient monitor (M540)

The following diagram shows the M540 when it is docked in the M500 docking station.

The M540 acquires patient signals, processes them, and relays them to the Cockpit for display. The M540 also provides patient monitoring when it is undocked during patient transport. For more detailed information on the M540, refer to the instructions for use Infinity Acute Care System – Infinity M540.

Infinity M500 docking station (M500)

The M500 is the mechanical device that secures and powers the M540. It also charges the battery and controls the communication between the M540 and the Cockpit through an optical Ethernet link.

M500 front panel

A Locking mechanism – secures the M540 (for more detailed information, see "Locking/unlocking the M540" on page 82)
B Release buttons for undocking the M540 (you only have to press one button to release the M540)
C Optical Ethernet links
D Pins for charging the battery of the M540 and for providing power to the M540 when docked
System overview

M500 back panel

- **A** System cable connector
- **B** Nurse call connector
- **C** LED – lights up green when connected to the network

Additional hardware

The following table lists the additional devices that can be connected to the IACS.

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinity MCable – Masimo SET</td>
<td>Measures the percentage of functional hemoglobin saturated with oxygen (%SpO₂) and reports the perfusion index (PI) and the pulse rate (PLS).</td>
<td>Connects directly to the SpO₂ connector of the M540 (see page 236 and page 254).</td>
</tr>
<tr>
<td>Infinity MCable – Masimo SET rainbow</td>
<td>Measures the percentage of functional hemoglobin saturated with oxygen (%SpO₂) and reports the perfusion index (PI) and the pulse rate (PLS). In addition, it measures total hemoglobin (SpHb), total oxygen content (SpOC), pleth variability index (PVI), Carboxyhemoglobin saturation (SpCO), methemoglobin saturation (SpMet).</td>
<td></td>
</tr>
<tr>
<td>Infinity MCable – Nellcor OxiMax</td>
<td>Measures the percentage of functional hemoglobin saturated with oxygen (%SpO₂) and the pulse rate (PLS).</td>
<td></td>
</tr>
</tbody>
</table>
System overview

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
<th>Connection Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemo4 pod Infinity MPod – QuadHemo</td>
<td>Measures up to 4 pressures, cardiac output, core and body temperature.</td>
<td>Connects directly to the Hemo connector of the M540 (see information starting on page 283).</td>
</tr>
<tr>
<td>Hemo2 pod</td>
<td>Measures up to 2 pressures, cardiac output, core and body temperature.</td>
<td></td>
</tr>
<tr>
<td>Infinity MCable – Dual Hemo</td>
<td>Measures up to 2 pressures.</td>
<td></td>
</tr>
<tr>
<td>Infinity MCable – Mainstream CO2</td>
<td>Measures mainstream CO2.</td>
<td>Connects directly to the CO2 connector of the M540 (see page 318).</td>
</tr>
<tr>
<td>Infinity MCable – Nurse call</td>
<td>Provides remote notification of medium and high priority alarm conditions.</td>
<td>Connects to the PS250 / P2500 (see page 23) or to the M500 (see page 24).</td>
</tr>
<tr>
<td>Infinity MCable – Analog/Sync</td>
<td>Provides a sync pulse to synchronize defibrillators to the heart beat of the patient during cardioversion. The cable’s analog out function provides an ECG and arterial blood pressure signal to a device such as intra-aortic balloon pump.</td>
<td>Connects to the Temp/Aux connector of the M540 (see page 262) or to the CO2 connector with a Y-cable.</td>
</tr>
<tr>
<td>Secondary video display</td>
<td>Extends the viewing capabilities of a Cockpit to an additional video display. Secondary displays mirror the content of the Cockpit.</td>
<td>Connects to a Cockpit using the DVI 1 connector located on the back panel (see the instructions for use Infinity Acute Care System – Medical Cockpit).</td>
</tr>
<tr>
<td>R50N recorder</td>
<td>Produces timed and continuous recordings.</td>
<td>Connects to the Infinity network or the PS250 / P2500.</td>
</tr>
<tr>
<td>Laser printer</td>
<td>Prints various reports and Cockpit print screens.</td>
<td>Connects to the Infinity network.</td>
</tr>
</tbody>
</table>
Device symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Warning! Strictly follow these instructions for use</td>
<td>Lower alarm limits</td>
</tr>
<tr>
<td>🟢</td>
<td>Consult instructions for use</td>
<td>Upper alarm limits</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution! Observe the accompanying documentation!</td>
<td>Autoset alarm limits</td>
</tr>
<tr>
<td>🇪🇺</td>
<td>Directive 93/42/EEC concerning Medical Devices</td>
<td>Alarm monitoring deactivated temporarily</td>
</tr>
<tr>
<td>🌋</td>
<td>Access to trend pages</td>
<td>Alarm monitoring deactivated permanently</td>
</tr>
<tr>
<td>🖼️</td>
<td>The button next to this symbol accesses special procedure pages</td>
<td>Acoustic alarm tone paused temporarily</td>
</tr>
<tr>
<td>🚨</td>
<td>Access to alarm functions</td>
<td>Acoustic alarm tone turned off permanently</td>
</tr>
<tr>
<td>🕒</td>
<td>Access to the standby and privacy modes, and access to patient discharge</td>
<td>Change clinical password</td>
</tr>
<tr>
<td>📚</td>
<td>Access to pre-configured views and layouts</td>
<td>Lung symbol that pulsates with each detected breath</td>
</tr>
<tr>
<td>🗂️</td>
<td>Access to parameter pages</td>
<td>Heart blip that flashes with each detected pulse</td>
</tr>
<tr>
<td>🤖</td>
<td>Adult patient category</td>
<td>Pediatric patient category</td>
</tr>
<tr>
<td>🦸‍♀️</td>
<td>Neonatal patient category</td>
<td>Pacer detection is activated; the heart symbol flashes with each detected paced pulse</td>
</tr>
</tbody>
</table>
System overview

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Battery status LED</td>
<td>Scrolls to additional tabs and pages</td>
</tr>
<tr>
<td></td>
<td>Battery charging error</td>
<td>Power on/off</td>
</tr>
<tr>
<td></td>
<td>AC power mains</td>
<td>Non-disposable part</td>
</tr>
<tr>
<td></td>
<td>Function/setting is unlocked</td>
<td>Device part number and revision</td>
</tr>
<tr>
<td></td>
<td>Function/setting is locked</td>
<td>Device serial number</td>
</tr>
<tr>
<td></td>
<td>Data entry with numeric keypad</td>
<td>Date of manufacture</td>
</tr>
<tr>
<td></td>
<td>Trend configuration</td>
<td>Complete screen calibration procedure</td>
</tr>
<tr>
<td></td>
<td>Onscreen keyboard access</td>
<td>Repeat screen calibration procedure</td>
</tr>
<tr>
<td></td>
<td>Nurse call</td>
<td>Display filter. When selected, only the connected parameters and associated setup pages are displayed. When deselected, all parameters and associated setup pages are displayed.</td>
</tr>
<tr>
<td></td>
<td>Manufacturer</td>
<td>Zeroing all pressures</td>
</tr>
<tr>
<td></td>
<td>Parameter is excluded from display</td>
<td>Parameter is represented as a parameter box only</td>
</tr>
<tr>
<td></td>
<td>Parameter is represented as a waveform and a parameter box</td>
<td>Import functions (for example, importing profiles)</td>
</tr>
<tr>
<td></td>
<td>Save modifications (for example, changes to a view)</td>
<td>ESD warning</td>
</tr>
</tbody>
</table>
System overview

Abbreviations

The following table lists the abbreviations used in these instructions for use and those that are displayed on the Cockpit. For any abbreviations of parameters originating from external devices, refer to the corresponding instructions for use.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MVspon</td>
<td>Spontaneous minute volume, fractional</td>
</tr>
<tr>
<td>% leak</td>
<td>Relative leakage</td>
</tr>
<tr>
<td>%PACED</td>
<td>Percentage of paced beats</td>
</tr>
<tr>
<td>SC-ΔPsupp</td>
<td>Pressure support goal (Smart-Care)</td>
</tr>
<tr>
<td>ΔO2</td>
<td>Inspiratory/expiratory oxygen concentration difference</td>
</tr>
<tr>
<td>AAMI</td>
<td>Association for the Advancement of Medical Instrumentation</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>Air cons</td>
<td>Cumulated air consumption</td>
</tr>
<tr>
<td>AIVR</td>
<td>Accelerated idioventricular rhythm</td>
</tr>
<tr>
<td>alv</td>
<td>Alveolar</td>
</tr>
<tr>
<td>APR</td>
<td>Arterial pulse rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR</td>
<td>Arrhythmia</td>
</tr>
<tr>
<td>ART</td>
<td>Arterial pressure</td>
</tr>
<tr>
<td>ART D</td>
<td>ART diastolic value</td>
</tr>
<tr>
<td>ART M</td>
<td>ART mean value</td>
</tr>
<tr>
<td>ART S</td>
<td>ART systolic value</td>
</tr>
<tr>
<td>ARTF</td>
<td>Artifact</td>
</tr>
<tr>
<td>ASY</td>
<td>Asystole</td>
</tr>
<tr>
<td>aVF</td>
<td>ECG lead aVF</td>
</tr>
<tr>
<td>aVL</td>
<td>ECG lead aVL</td>
</tr>
<tr>
<td>aVR</td>
<td>ECG lead aVR</td>
</tr>
<tr>
<td>AW-Temp</td>
<td>Gas temperature (airway)</td>
</tr>
<tr>
<td>BCT</td>
<td>Burst count</td>
</tr>
<tr>
<td>BIS</td>
<td>Bispectral index</td>
</tr>
<tr>
<td>BGM</td>
<td>Bigeminy</td>
</tr>
<tr>
<td>BRADY</td>
<td>Bradycardia</td>
</tr>
<tr>
<td>BSA</td>
<td>Body surface area</td>
</tr>
<tr>
<td>BSR</td>
<td>Suppression ratio</td>
</tr>
<tr>
<td>CaO2</td>
<td>Arterial oxygen content</td>
</tr>
<tr>
<td>CCO</td>
<td>Continuous cardiac output</td>
</tr>
</tbody>
</table>
Abbreviation | Description
---|---
CCI | Continuous cardiac index
C.O. | Cardiac output
Cdyn | Dynamic lung compliance
C20/Cdyn | Ratio of compliance during last 20% of inspiration over dynamic compliance
CI | Cardiac index
CISPR | International special committee on radio interference
CO2 | Carbon dioxide
CPP | Cerebral perfusion pressure
CPT | Ventricular couplet
Cs | Static lung compliance
Cstat | Static lung compliance
CvO2 | Venous oxygen content
DCO2 | CO₂ elimination coefficient during HFO
CVP | Central venous pressure
Des | Desflurane
Des cons | Cumulated desflurane consumption
DHCP | Dynamic host configuration protocol
DNS | Domain name system
DO2 | Oxygen delivery
DO2I | Oxygen delivery index
dV1 to dV6 | Derived chest leads
DVI | Digital visual interface
E | Lung elastance
ECG | Electrocardiogram
EDV | End diastolic volume
EDVI | End diastolic volume index
EF | Ejection fraction
EIP | End inspiratory pressure
Enf | Enflurane
Enf cons | Cumulated enflurane consumption
ESV | End systolic volume
ESVI | End systolic volume index
et | End-tidal (in combination with gas values)
etDes | End-tidal desflurane concentration
etDes | End-tidal desflurane concentration
etEnf | End-tidal enflurane concentration
etHal | End-tidal halothane concentration
etIso | End-tidal isoflurane concentration
etN2O | End-tidal N₂O concentration
etO2 | End-tidal oxygen concentration
etSev | End-tidal sevoflurane concentration
FiO2 | Fractional inspired O₂
FV | Flow-volume loop
GP1 D to GP4 D | General pressure 1-4 diastolic value
GP1 M to GP4 M | GP 1 to 4 mean value
GP1 S to GP4 S | GP 1 to 4 systolic value
Hal | Halothane
Hal cons | Cumulated halothane consumption
HFO | High-frequency oscillation
Ht | Height
Hgb | Hemoglobin
HR | Heart rate
I | ECG lead I
IACS | Infinity Acute Care System – Monitoring Applications
I:E | Inspiratory to expiratory ratio
I:E I part | Inspiratory:expiratory ratio (inspiratory component)
System overview

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:E E part</td>
<td>Inspiratory:expiratory ratio, expiratory component</td>
</tr>
<tr>
<td>I:Espon I-Part</td>
<td>Inspiratory:expiratory ratio, spontaneous, inspiratory component</td>
</tr>
<tr>
<td>I:Espon E-Part</td>
<td>Inspiratory:expiratory ratio, spontaneous, expiratory component</td>
</tr>
<tr>
<td>IBP</td>
<td>Invasive blood pressure</td>
</tr>
<tr>
<td>ICI</td>
<td>Intermittent cardiac index</td>
</tr>
<tr>
<td>ICO</td>
<td>Intermittent cardiac output</td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial pressure</td>
</tr>
<tr>
<td>ICS</td>
<td>Infinity CentralStation</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>II</td>
<td>ECG lead II</td>
</tr>
<tr>
<td>III</td>
<td>ECG lead III</td>
</tr>
<tr>
<td>in</td>
<td>Inspiratory (in combination with gas values)</td>
</tr>
<tr>
<td>inj</td>
<td>Injectate temperature</td>
</tr>
<tr>
<td>inDes</td>
<td>Inspiratory desflurane concentration</td>
</tr>
<tr>
<td>inEnf</td>
<td>Inspiratory enflurane concentration</td>
</tr>
<tr>
<td>inHal</td>
<td>Inspiratory halothane concentration</td>
</tr>
<tr>
<td>inIso</td>
<td>Inspiratory isoflurane concentration</td>
</tr>
<tr>
<td>inxMAC</td>
<td>MAC factor</td>
</tr>
<tr>
<td>inN2O</td>
<td>Inspiratory N2O concentration</td>
</tr>
<tr>
<td>inSev</td>
<td>Inspiratory sevoflurane concentration</td>
</tr>
<tr>
<td>Insp. term.</td>
<td>Inspiratory termination criterion based on peak inspiratory flow</td>
</tr>
<tr>
<td>iO2</td>
<td>Inspired O2</td>
</tr>
<tr>
<td>ISO</td>
<td>Iso-electric point</td>
</tr>
<tr>
<td>Iso</td>
<td>Isoflurane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso cons</td>
<td>Cumulated Isoflurane consumption</td>
</tr>
<tr>
<td>LA</td>
<td>Left arm (ECG)</td>
</tr>
<tr>
<td>LA</td>
<td>Left atrial pressure</td>
</tr>
<tr>
<td>LHCPP</td>
<td>Left heart coronary perfusion pressure</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricular pressure</td>
</tr>
<tr>
<td>LV D</td>
<td>LV diastolic value</td>
</tr>
<tr>
<td>LV M</td>
<td>LV mean value</td>
</tr>
<tr>
<td>LV S</td>
<td>LV systolic value</td>
</tr>
<tr>
<td>LVSW</td>
<td>Left ventricular stroke work</td>
</tr>
<tr>
<td>LVSWI</td>
<td>Left ventricular stroke work index</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean airway pressure</td>
</tr>
<tr>
<td>MV</td>
<td>Total minute volume</td>
</tr>
<tr>
<td>MValv</td>
<td>Alveolar minute volume</td>
</tr>
<tr>
<td>MV ds</td>
<td>Minute volume, dead space</td>
</tr>
<tr>
<td>MVe</td>
<td>Minute volume, total expiratory</td>
</tr>
<tr>
<td>MVe s</td>
<td>Minute volume, spontaneous expiratory</td>
</tr>
<tr>
<td>MVi</td>
<td>Minute volume, total inspiratory</td>
</tr>
<tr>
<td>MVi s</td>
<td>Minute volume, spontaneous inspiratory</td>
</tr>
<tr>
<td>MVleak</td>
<td>Minute volume leakage</td>
</tr>
<tr>
<td>MVmand</td>
<td>Minute volume, mandatory</td>
</tr>
<tr>
<td>MVspon</td>
<td>Minute volume, expired spontaneous</td>
</tr>
<tr>
<td>N2O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>N2O cons</td>
<td>Cumulated N2O consumption</td>
</tr>
<tr>
<td>NIBP</td>
<td>Non-invasive blood pressure</td>
</tr>
<tr>
<td>NIBP D</td>
<td>NIBP diastolic value</td>
</tr>
<tr>
<td>NIBP M</td>
<td>NIBP mean value</td>
</tr>
<tr>
<td>NIBP S</td>
<td>NIBP systolic value</td>
</tr>
<tr>
<td>NIF</td>
<td>Negative inspiratory force</td>
</tr>
<tr>
<td>NMT</td>
<td>Neuromuscular transmission</td>
</tr>
<tr>
<td>O2 cons</td>
<td>Cumulated O2 consumption</td>
</tr>
</tbody>
</table>
System Overview

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Operating room</td>
</tr>
<tr>
<td>P2500</td>
<td>Power supply</td>
</tr>
<tr>
<td>P0.1</td>
<td>Occlusion pressure</td>
</tr>
<tr>
<td>PA</td>
<td>Pulmonary arterial pressure</td>
</tr>
<tr>
<td>PA D</td>
<td>PA diastolic value</td>
</tr>
<tr>
<td>PA M</td>
<td>PA mean value</td>
</tr>
<tr>
<td>PA S</td>
<td>PA systolic value</td>
</tr>
<tr>
<td>PaO2</td>
<td>Arterial O2 pressure</td>
</tr>
<tr>
<td>Pause</td>
<td>Pause pressure</td>
</tr>
<tr>
<td>Paw</td>
<td>Airway pressure</td>
</tr>
<tr>
<td>PAW min</td>
<td>Minimum airway pressure</td>
</tr>
<tr>
<td>PaCO2</td>
<td>Arterial CO2 pressure</td>
</tr>
<tr>
<td>Pb</td>
<td>Barometric pressure</td>
</tr>
<tr>
<td>PeCO2</td>
<td>Mixed expired CO2 pressure</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive end expiratory pressure</td>
</tr>
<tr>
<td>PEEPi</td>
<td>Intrinsic positive end expiratory airway pressure</td>
</tr>
<tr>
<td>ΔPhf</td>
<td>Δ pressure amplitude during HFO</td>
</tr>
<tr>
<td>Phigh</td>
<td>Upper pressure level during APRV</td>
</tr>
<tr>
<td>PI</td>
<td>Perfusion index (SpO2)</td>
</tr>
<tr>
<td>PIP</td>
<td>Peak inspiratory pressure</td>
</tr>
<tr>
<td>Pinsp</td>
<td>Inspiratory pressure</td>
</tr>
<tr>
<td>Plow</td>
<td>Lower pressure level during APRV</td>
</tr>
<tr>
<td>PLS</td>
<td>Pulse rate from SpO2</td>
</tr>
<tr>
<td>PLS ART</td>
<td>Arterial pressure – pulse rate</td>
</tr>
<tr>
<td>Pmax</td>
<td>Maximum inspired pressure</td>
</tr>
<tr>
<td>Pmean</td>
<td>Mean airway pressure</td>
</tr>
<tr>
<td>Pmin</td>
<td>Minimum airway pressure</td>
</tr>
<tr>
<td>Pplat</td>
<td>Plateau pressure</td>
</tr>
<tr>
<td>PTC</td>
<td>Post tetanic count</td>
</tr>
<tr>
<td>PS250</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔPs upp</td>
<td>Pressure amplitude above PEEP in pressure support</td>
</tr>
<tr>
<td>SC-ΔPs upp</td>
<td>Pressure support by internal controller (SmartCare)</td>
</tr>
<tr>
<td>PV</td>
<td>Pressure-volume loop</td>
</tr>
<tr>
<td>PVC/min</td>
<td>Rate of PVC (pre-ventricular contractions) per minute</td>
</tr>
<tr>
<td>PVI</td>
<td>Pleth variability index</td>
</tr>
<tr>
<td>PVR</td>
<td>Pulmonary vascular resistance</td>
</tr>
<tr>
<td>PVRI</td>
<td>Pulmonary vascular resistance index</td>
</tr>
<tr>
<td>PWP</td>
<td>Pulmonary wedge pressure</td>
</tr>
<tr>
<td>PWR</td>
<td>Total signal power</td>
</tr>
<tr>
<td>Qs/Qt</td>
<td>Intrapulmonary right-left shunt</td>
</tr>
<tr>
<td>R50N</td>
<td>Strip recorder</td>
</tr>
<tr>
<td>R</td>
<td>Resistance (airway)</td>
</tr>
<tr>
<td>r2</td>
<td>Parameter correlation factor</td>
</tr>
<tr>
<td>RA</td>
<td>Right arm (ECG)</td>
</tr>
<tr>
<td>RA</td>
<td>Right atrial pressure</td>
</tr>
<tr>
<td>Raw</td>
<td>Resistance (airway)</td>
</tr>
<tr>
<td>Raw exp</td>
<td>Expiratory resistance (airway)</td>
</tr>
<tr>
<td>Raw insp</td>
<td>Inspiratory resistance (airway)</td>
</tr>
<tr>
<td>Resp</td>
<td>Respiration</td>
</tr>
<tr>
<td>RR</td>
<td>Respiration rate</td>
</tr>
<tr>
<td>RRapn</td>
<td>Rate for apnea ventilation</td>
</tr>
<tr>
<td>RPP</td>
<td>Rate pressure product</td>
</tr>
<tr>
<td>RRc</td>
<td>Respiratory rate (CO2)</td>
</tr>
<tr>
<td>RRI</td>
<td>Respiratory rate (impedance)</td>
</tr>
<tr>
<td>RRmand</td>
<td>Mandatory respiratory rate</td>
</tr>
<tr>
<td>RRs</td>
<td>Respiratory rate, spontaneous</td>
</tr>
<tr>
<td>RRsp</td>
<td>Respiratory rate, spontaneous</td>
</tr>
<tr>
<td>RR</td>
<td>Respiratory rate, ventilation</td>
</tr>
<tr>
<td>RSB</td>
<td>Rapid shallow breathing index</td>
</tr>
<tr>
<td>RUN</td>
<td>Ventricular run</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricular pressure</td>
</tr>
<tr>
<td>RV D</td>
<td>RV diastolic value</td>
</tr>
<tr>
<td>RV M</td>
<td>RV mean value</td>
</tr>
<tr>
<td>RV S</td>
<td>RV systolic value</td>
</tr>
<tr>
<td>RVSW</td>
<td>Right ventricular stroke work</td>
</tr>
<tr>
<td>RVSWI</td>
<td>Right ventricular stroke work index</td>
</tr>
<tr>
<td>SaO2</td>
<td>Arterial oxygen saturation</td>
</tr>
<tr>
<td>SC-duration</td>
<td>Duration of patient session (SmartCare)</td>
</tr>
<tr>
<td>SC-etCO2</td>
<td>etCO2 (SmartCare)</td>
</tr>
<tr>
<td>SC-RRspon</td>
<td>Spontaneous frequency (SmartCare)</td>
</tr>
<tr>
<td>SC-VT</td>
<td>Tidal volume (SmartCare)</td>
</tr>
<tr>
<td>Sev cons</td>
<td>Cumulative sevoflurane consumption</td>
</tr>
<tr>
<td>SEF</td>
<td>Spectral edge frequency</td>
</tr>
<tr>
<td>SpCO</td>
<td>Carboxyhemoglobin saturation</td>
</tr>
<tr>
<td>SpHb</td>
<td>Total arterial hemoglobin</td>
</tr>
<tr>
<td>SpHbv</td>
<td>Total hemoglobin (venous)</td>
</tr>
<tr>
<td>SpMet</td>
<td>Methemoglobin saturation</td>
</tr>
<tr>
<td>SpOC</td>
<td>Total oxygen content</td>
</tr>
<tr>
<td>SpO2</td>
<td>Oxygen saturation measured by pulse oximetry</td>
</tr>
<tr>
<td>SpO2/CO-Ox</td>
<td>CO-oximetry</td>
</tr>
<tr>
<td>SQI</td>
<td>Signal quality index</td>
</tr>
<tr>
<td>ST(x)</td>
<td>ST deviation of lead (x)</td>
</tr>
<tr>
<td>STdV1</td>
<td>ST deviations of derived leads</td>
</tr>
<tr>
<td>STdV3</td>
<td></td>
</tr>
<tr>
<td>STdV4</td>
<td></td>
</tr>
<tr>
<td>STdV6</td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>Stroke volume</td>
</tr>
<tr>
<td>SVI</td>
<td>Stroke volume index</td>
</tr>
<tr>
<td>SvO2</td>
<td>Venous oxygen saturation</td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic vascular resistance</td>
</tr>
<tr>
<td>SVRI</td>
<td>Systemic vascular resistance index</td>
</tr>
<tr>
<td>SVT</td>
<td>Supraventricular tachycardia</td>
</tr>
<tr>
<td>SVV</td>
<td>Stroke volume variation</td>
</tr>
<tr>
<td>TACH</td>
<td>Tachycardia</td>
</tr>
<tr>
<td>Tapn</td>
<td>Apnea</td>
</tr>
<tr>
<td>Tblood</td>
<td>Blood temperature</td>
</tr>
<tr>
<td>TC</td>
<td>Time constant</td>
</tr>
<tr>
<td>Tcase</td>
<td>Therapy case duration</td>
</tr>
<tr>
<td>Thigh</td>
<td>Time of upper pressure level in APRV</td>
</tr>
<tr>
<td>Ti</td>
<td>Inspired time</td>
</tr>
<tr>
<td>Ti set</td>
<td>Inspired time setting</td>
</tr>
<tr>
<td>Tinj</td>
<td>Injectate temperature</td>
</tr>
<tr>
<td>Tispon</td>
<td>Spontaneous inspiratory time</td>
</tr>
<tr>
<td>Tlow</td>
<td>Time of low pressure level in APRV</td>
</tr>
<tr>
<td>TOF Cnt</td>
<td>Train of four (NMT)</td>
</tr>
<tr>
<td>TPR</td>
<td>Total pulmonary resistance</td>
</tr>
<tr>
<td>Trapped VOL</td>
<td>Trapped volume</td>
</tr>
<tr>
<td>TruST</td>
<td>Algorithm that provides a TruST 12-lead-ECG (including derived chest leads dV1, dV3, dV4, dV6) using a 6 lead wire set that provides ECG leads I, II, III, aVL, aVR, aVF, V2, V5.</td>
</tr>
<tr>
<td>VTe</td>
<td>Tidal volume, expiratory</td>
</tr>
<tr>
<td>TVd aw</td>
<td>Tidal volume, dead space</td>
</tr>
<tr>
<td>Vds/VTe</td>
<td>Tidal volume, relative dead space</td>
</tr>
<tr>
<td>VTI</td>
<td>Tidal volume, inspired</td>
</tr>
<tr>
<td>TVR</td>
<td>Total vascular resistance</td>
</tr>
<tr>
<td>V</td>
<td>Chest or precordial lead from a 5 or 6 lead wire set.</td>
</tr>
<tr>
<td>V+</td>
<td>Second chest or precordial lead from a 6-lead wire set.</td>
</tr>
</tbody>
</table>
System overview

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 - V6</td>
<td>ECG chest leads V1 to V6</td>
</tr>
<tr>
<td>VCO2</td>
<td>CO₂ production</td>
</tr>
<tr>
<td>VCO2</td>
<td>CO₂ production</td>
</tr>
<tr>
<td>Vds</td>
<td>Dead space</td>
</tr>
<tr>
<td>Vds/VTe</td>
<td>Relative dead space</td>
</tr>
<tr>
<td>VESA</td>
<td>Video Electronics Standard Association</td>
</tr>
<tr>
<td>VF</td>
<td>Ventricular fibrillation</td>
</tr>
<tr>
<td>VO2</td>
<td>Oxygen consumption</td>
</tr>
<tr>
<td>VO2</td>
<td>Oxygen consumption</td>
</tr>
<tr>
<td>VO2I</td>
<td>Oxygen consumption index</td>
</tr>
<tr>
<td>VTACH</td>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>VT</td>
<td>Tidal volume</td>
</tr>
<tr>
<td>VTe</td>
<td>Tidal volume, expired</td>
</tr>
<tr>
<td>VTemand</td>
<td>Mandatory expiratory tidal volume</td>
</tr>
<tr>
<td>VTespon</td>
<td>Spontaneous expired total volume</td>
</tr>
<tr>
<td>VTespon mean</td>
<td>Spontaneous expired mean total volume</td>
</tr>
<tr>
<td>VThf</td>
<td>Tidal volume for HFO</td>
</tr>
<tr>
<td>VTimand</td>
<td>Mandatory inspired tidal volume</td>
</tr>
<tr>
<td>VTi</td>
<td>Tidal volume, inspired</td>
</tr>
<tr>
<td>VTipon</td>
<td>Spontaneous inspired tidal volume</td>
</tr>
<tr>
<td>VTipon mean</td>
<td>Spontaneous inspired mean total volume</td>
</tr>
<tr>
<td>VTmand</td>
<td>Tidal volume, mandatory</td>
</tr>
<tr>
<td>VTipon mean</td>
<td>Spontaneous mean tidal volume</td>
</tr>
<tr>
<td>VTipon</td>
<td>Spontaneous tidal volume, leakage corrected</td>
</tr>
<tr>
<td>Vtrap</td>
<td>Trapped volume</td>
</tr>
<tr>
<td>VT/Wt</td>
<td>Tidal volume per kg body weight</td>
</tr>
</tbody>
</table>
Operating concept

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>36</td>
</tr>
<tr>
<td>The IACS components</td>
<td>37</td>
</tr>
<tr>
<td>M540 and Cockpit communication</td>
<td>38</td>
</tr>
<tr>
<td>Docking the M540</td>
<td>38</td>
</tr>
<tr>
<td>Undocking the M540</td>
<td>39</td>
</tr>
<tr>
<td>Communicating with the Infinity network</td>
<td>40</td>
</tr>
<tr>
<td>Remote control and remote view</td>
<td>43</td>
</tr>
<tr>
<td>Communication management</td>
<td>45</td>
</tr>
<tr>
<td>Loss of power</td>
<td>47</td>
</tr>
<tr>
<td>Locked options</td>
<td>48</td>
</tr>
<tr>
<td>Temporary options</td>
<td>48</td>
</tr>
<tr>
<td>Secondary display</td>
<td>49</td>
</tr>
<tr>
<td>Export protocol</td>
<td>49</td>
</tr>
<tr>
<td>User interface</td>
<td>50</td>
</tr>
<tr>
<td>Header bar</td>
<td>51</td>
</tr>
<tr>
<td>Monitoring area</td>
<td>52</td>
</tr>
<tr>
<td>Parameter boxes</td>
<td>53</td>
</tr>
<tr>
<td>Waveforms</td>
<td>53</td>
</tr>
<tr>
<td>Freezing/stopping waveforms</td>
<td>54</td>
</tr>
<tr>
<td>Supported banners</td>
<td>54</td>
</tr>
<tr>
<td>Dialog windows and pages</td>
<td>55</td>
</tr>
<tr>
<td>Main menu bar and quick access toolbar</td>
<td>56</td>
</tr>
<tr>
<td>Main menu bar</td>
<td>56</td>
</tr>
<tr>
<td>Quick access toolbar</td>
<td>57</td>
</tr>
<tr>
<td>Filtering the parameter content</td>
<td>58</td>
</tr>
<tr>
<td>Auto and manual display modes</td>
<td>58</td>
</tr>
<tr>
<td>Auto view mode</td>
<td>58</td>
</tr>
<tr>
<td>Manual view mode</td>
<td>58</td>
</tr>
<tr>
<td>Auto view setup toolbar</td>
<td>59</td>
</tr>
<tr>
<td>Customizing the display</td>
<td>59</td>
</tr>
<tr>
<td>Touch screen versus mouse</td>
<td>59</td>
</tr>
<tr>
<td>Screen brightness</td>
<td>59</td>
</tr>
<tr>
<td>Calibrating the touch screen</td>
<td>59</td>
</tr>
<tr>
<td>Cockpit screen in split screen mode</td>
<td>60</td>
</tr>
<tr>
<td>Cockpit split screen mode with mini trends</td>
<td>61</td>
</tr>
<tr>
<td>Cockpit split screen mode with multi-tab split screen</td>
<td>62</td>
</tr>
<tr>
<td>Cockpit split screen mode with mini trends and IT tabs</td>
<td>63</td>
</tr>
<tr>
<td>Parameter priority</td>
<td>64</td>
</tr>
<tr>
<td>Configuring the parameter priority and display</td>
<td>64</td>
</tr>
<tr>
<td>Parameter priority list</td>
<td>64</td>
</tr>
<tr>
<td>Views</td>
<td>65</td>
</tr>
<tr>
<td>Selecting a view</td>
<td>65</td>
</tr>
<tr>
<td>The view editor</td>
<td>65</td>
</tr>
<tr>
<td>Profiles/status</td>
<td>66</td>
</tr>
<tr>
<td>Patient and default profiles</td>
<td>66</td>
</tr>
<tr>
<td>Settings included in a profile</td>
<td>67</td>
</tr>
<tr>
<td>Settings not included in a profile</td>
<td>71</td>
</tr>
<tr>
<td>System profiles</td>
<td>72</td>
</tr>
<tr>
<td>Managing profiles and views</td>
<td>76</td>
</tr>
<tr>
<td>Transferring profiles</td>
<td>76</td>
</tr>
<tr>
<td>Standby mode</td>
<td>77</td>
</tr>
<tr>
<td>Privacy mode</td>
<td>78</td>
</tr>
</tbody>
</table>

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Operating concept

Overview

The IACS is a fully networked solution that offers patient monitoring, therapy, and IT applications at the point of care.

Dräger developed the IACS to solve problems common in the acute care environment. As a result, the IACS provides standardized user interfaces, improves workplace ergonomics and flexibility, and centralizes patient information at the point of care. The IACS also provides the ability to backfill information automatically after patient transport. An M540 on wireless transport transmits the data to the ICS (Infinity CentralStation) during transport.

The central component of the IACS is the Cockpit. This medical-grade workstation provides centralized viewing and control of Infinity monitoring systems and IT applications at the point of care. The Cockpit is available in two sizes. The C700 is a 20-inch (50.8 cm), and the C500 is a 17-inch (43.2 cm) wide screen. Both offer a large viewing angle, extended screen configuration capabilities, and a fanless design.

The common Dräger-standardized user interface offers intuitive operation via a touch screen and a rotary knob. A 360-degree alarm bar alerts you to the alarm conditions of a patient.
The IACS components

The following diagram shows a possible IACS configuration.

A C500/C700
B DVI cable
C Secondary display (option)
D USB cable
E Keyboard and mouse (option)
F Device connectivity cable (option)
G M540 patient monitor
H M500 docking station
I System cables
J R50N recorder (option)
K AC power
L Infinity network
M Infinity MCable – Nurse call (option)
N P2500 / PS250
O Hospital network
P Ethernet cable
Operating concept

M540 and Cockpit communication

Communication between the M540 and the Cockpit starts as soon as the M540 is docked in the M500 (see page 81). The M540 acquires physiological signals from the patient and relays them to the Cockpit for display. The Cockpit then makes the patient data available to the Infinity network.

When the M540 is docked, the Cockpit assumes the annunciation of all acoustic alarm signals. However, alarms are always reported visually at the Cockpit and at the M540. When the M540 is undocked for transport, it provides acoustic alarm signals. In addition, the ICS can assume the annunciation of acoustic alarm signals for an M540 on wireless transport.

NOTE
If you also want alarms to sound at the M540 when it is docked, select the alarm tone volume at the M540 manually. For information refer to the M540 instructions for use.

Docking the M540

As soon as you dock the M540 in the M500, the following happens at the Cockpit:

– The message Connecting to M540 appears in the center of the Cockpit screen.
– The Cockpit makes the data of the M540 available to the Infinity network.

NOTE
If you dock an M540 with a patient category that differs from the one selected on the Cockpit, the patient category setting of the Cockpit changes to match the one of the M540.

Docking to the same Cockpit

If you undock an M540 from a Cockpit and later dock the M540 to the same Cockpit, the data collection continues seamlessly. The Cockpit automatically retrieves any data the M540 collected while on patient transport and merges it with the data set for that patient.

NOTE
If the M540 cannot communicate with the Cockpit, the Cockpit sounds an alarm. In addition, an alarm indicating a loss of communication is broadcast over the network to the Infinity CentralStation (ICS) provided the patient is admitted there. The M540 continues to monitor the patient.

NOTE
If you also want alarms to sound at the M540 when it is docked, select the alarm tone volume at the M540 manually. For information refer to the M540 instructions for use.

NOTE
If the M540 cannot communicate with the Cockpit, the Cockpit sounds an alarm. In addition, an alarm indicating a loss of communication is broadcast over the network to the Infinity CentralStation (ICS) provided the patient is admitted there. The M540 continues to monitor the patient.
Docking to a different Cockpit

CAUTION
Before you connect the M540 to a different Cockpit, make sure that the units of measure align between the two devices. Differing units of measure could result in loss of data or a patient discharge.

If you undock an M540 from a Cockpit and later dock the M540 to a different Cockpit, the original data are automatically retrieved over the network by the new Cockpit. The new Cockpit then automatically merges this data with any data the M540 collected while on patient transport. The original Cockpit automatically discharges the patient once all patient data are transferred.

When moving the M540 between Cockpits in different monitoring units, the time stamps may differ occasionally between the Cockpit and the M540.

If not all patient data was transferred, the message **Transfer of Data Incomplete** appears in the header bar of the new Cockpit. In this case, the original Cockpit does not discharge the patient.

Undocking the M540

When you undock the M540, the following happens:

- The message **Disconnected from M540** appears in the center of the Cockpit screen.
- When the M540 is not in wireless mode, a message appears at the ICS that the bed is disconnected. When the wireless option for an M540 is activated and configured properly, the ICS displays the wireless symbol.
- Data are no longer trended at the Cockpit.
- With each docking or undocking of an M540, there is a short transition period. One minute of trend data collected during this transition period may not be displayed at an ICS equipped with software version VG1. However, these trend data can be reviewed at the Cockpit.
- Several buttons remain active on the main menu bar of the Cockpit:
 - **Alarms...** for accessing the alarm history
 - **Trends/Data...** for accessing the trend data
 - **Start/Standby...** for accessing the Start tab from where you can initiate a patient discharge.
- The current patient data from the Cockpit are no longer available to the Infinity network. However, when the wireless option for an M540 is activated and configured properly, it will continue to make the data available to the Infinity network.
- Parameter values acquired using the device connectivity option are no longer available to the Infinity network.
Communicating with the Infinity network

When the M540 is docked on the M500 and the IACS is connected to the network, the patient data are available on the Infinity network. When the setting **Enable central station** is activated (see page 421), the Cockpit provides additional messages and alert tones for central monitoring. For more information, see page 38.

Communicating with the Infinity network has the following benefits:

- Patient data are sent across the Infinity network to connected devices.
- The alarm status of the patient is reported to the Infinity network and its connected devices. If multiple alarm conditions are present, the alarm with the highest alarm priority is reported.
- The patient can be admitted at the ICS for central monitoring. The IACS is fully compatible with ICS software VG8.12 or higher.

WARNING

When the M540 is connected to the Infinity network, make sure that the ICS is equipped with software version VF8.10 or a later version. On earlier versions of the ICS, gaps in the waveform may be displayed in the Full Disclosure application of the ICS after docking or undocking a wireless M540.

- You can view the Cockpit from other Infinity monitors within the same monitoring unit using the remote view function (see page 44).
- From the Cockpit you can view other bedside monitors (including other Cockpits) in the same monitoring unit using the remote view function (see page 43).

Loss of connection to the network

When the Cockpit loses connection to the Infinity network and the feature **Offline detection** is activated (see page 422), the following happens:

- A single notification alarm of low alarm priority sounds once within 25 seconds of the offline condition until the communication with the network is restored or the alarm is acknowledged. The alarm tone sounds even if alarms are paused or the alarm volume has been deactivated.
- The alarm volume is automatically adjusted to 100% until the network connection is restored. Once the Cockpit re-establishes communication with the network, the previous alarm volume is restored.
- The message **Offline** appears on cyan background in the network message area of the Cockpit until the connection to the network is restored.

When the wireless option is activated and configured properly, the M540 switches to wireless transport mode automatically within 10 seconds of being undocked from the M500 (see "Undocking the M540" on page 39). For detailed information on how an M540 behaves on wireless transport, refer to the instructions for use *Infinity Acute Care System – Infinity M540*.

M540 in standalone mode

When the wireless option is activated and configured, a standalone M540 communicates wirelessly with the Infinity network when undocked. When docked, a wireless M540 transitions back to a wired connection, and the wireless symbol is replaced by the network symbol 🌐.

For detailed information on how the M540 behaves in standalone mode, see the instructions for use entitled *Infinity Acute Care System – Infinity M540*.
Network data transfer

The IACS supports the transfer of patient data to and from the following devices assigned to the same monitoring unit:

- Infinity Delta/Delta XL/Kappa (software version VF7 and higher)
- Other IACS monitoring Cockpits

NOTE
You can also transfer patient data by undocking and redocking an M540.

The following data are included in a patient data transfer:

- Patient demographic information (see page 89 for information of what demographic data is included)
- Trends (up to 60 trended parameters)
- Events containing up to 32 parameters for (C500) or up to 40 parameters for (C700)
- Hemodynamic, oxygenation, and ventilation calculation results
- Lab data values are not transferred during a network transfer. The following diagram shows the Transfer page which is used for patient data transfers.

NOTE
The amount of data being transferred over the network depends on how much data is available at the source device. A maximum of 60 trend parameters can be transferred over the network based on the parameter priority of the Cockpit.

For Delta series monitors, the maximum amount of data is 24 hours. For a network transfer between IACS Cockpits, the maximum of data is 96 hours.

- Events containing up to 32 parameters for (C500) or up to 40 parameters for (C700)
- Hemodynamic, oxygenation, and ventilation calculation results
- Lab data values are not transferred during a network transfer.

To transfer data over the network

The IACS network supports the transfer of patient data from a source device, such as an Infinity Delta, Delta XL/Kappa or an IACS Cockpit, to another Cockpit.

1. Place the source device in standby mode.
2. Go to the Cockpit to which you wish to transfer data.
3 Select the **Start/Standby** button on the main menu bar.

4 Select the **Transfer** tab (if not already selected). The **Transfer** page (see page 45) lists all of the devices in the currently selected care area who are in standby mode.

5 Use the care area selection arrow (B) on the **Transfer** page to select the care area from the list in which the source device is located.

6 Select the source device in the **Device name** column (D).

7 Select the **Start transfer** button (E).

8 Press the rotary knob. A **Confirm transfer** dialog window appears with the following message: *The network transfer will delete existing patient data on this device.*

9 Select one of the following buttons:

- **Cancel** – to prevent the data transfer and return to the **Transfer** page.
- **Transfer** – to discharge the patient from the Cockpit and initiate the data transfer. During the transfer, the Cockpit and M540 display the message *Transferring data...*

CAUTION

To prevent mixing the data of two patients, first discharge the patient admitted at the destination Cockpit. If the patient is not discharged, the new data will be appended to the existing data stored at the destination Cockpit.

CAUTION

Do not touch the screen or undock the M540 during the transfer or a network failure will occur and the transfer will not be completed.

A successful transfer results in the following:

- The Cockpit returns to the main screen.
- The message **Transfer Complete** appears in the Cockpit header.

A failed transfer results in the following:

- The Cockpit returns to the **Transfer** page.
- The message **Transfer of data incomplete** displays in the network message header of the Cockpit.
- The M540 returns to the last monitoring screen before the transfer started.
Remote control and remote view

When a Cockpit is connected to the Infinity network, data can be shared among Infinity devices that are connected to the network. From the Cockpit, you can view other Infinity devices and perform several remote functions. You can also allow other Infinity devices to view a Cockpit and perform remote functions by activating the remote control function (see page 421).

Remote view from the Cockpit

The remote view function of the Cockpit allows you to view patient data from other Infinity monitors within the same monitoring unit. If you are viewing another Cockpit, the remote view window shows the **Auto view** (see page 58) of the remote Cockpit.

The remote view function also allows you to pause acoustic alarm signals and request timed and continuous recordings of the remote device from the Cockpit.

To access the remote view

1. Select the Views... button on the main menu bar to access the Views dialog.
2. Select the Remote view tab. This dialog lists all of the beds in the monitoring unit of the Cockpit.
3. Select a bed from the list in the Views... dialog to access the remote view of an individual patient.
4. Select the Connect button.

The following diagram shows a Remote view dialog.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnect button</td>
<td>Audio Pause button</td>
<td>Continuous Recording button</td>
<td>Timed Recording button</td>
</tr>
</tbody>
</table>
Using remote view functions

From the Remote view dialog, you can perform the following functions (the letters in parenthesis refer to the Remote view dialog diagram on page 43):

- Select the Disconnect button (A) to exit the remote view.
- Select the Audio Pause button (B) to pause acoustic alarm signals at the remote device.
- Select the Continuous Recording (C) or Timed Recording (D) buttons to request a recording of the remote device. The recordings are printed on the recorder that is assigned to the Cockpit.

Central monitoring

When a Cockpit communicates with the Infinity network, you can admit the patient at the ICS for central monitoring. A Cockpit patient is represented on the ICS with a viewport and a bed view. A viewport consists of the top Cockpit waveform and the associated parameter box. The ICS also provides a bed view which is a window displaying the content of the Cockpit in greater detail. When the Cockpit is communicating with the ICS, the waveforms and parameter boxes are assigned to the bed view based on the parameter priority order.

In the remote view of the Cockpit, the banner Pacer off does not appear when the pacer detection is deactivated on the source monitor.

Network communication interruptions

When the Cockpit loses communication with the ICS, the following happens at the Cockpit when the Enable central station setting is activated (see page 421):

- The message Not monitored by central appears on cyan background in the network message area of the Cockpit.
- A single notification alarm of low alarm priority sounds within 25 seconds until communication with the ICS is restored or the alarm is acknowledged. The alarm tone sounds even when alarms are paused or the alarm volume has been deactivated.
- The alarm volume is adjusted automatically to 100% until the condition clears. Once the Cockpit re-establishes communication with the ICS, the previous alarm volume is restored.
- The message System not monitored by ICS is recorded in the alarm history.

When the communication between the Cockpit and the ICS is restored, the Cockpit displays the message System monitored by ICS in the alarm history. The patient data are again accessible at the ICS.

When the setting Enable central station is deactivated (see page 421), none of the above features are supported.
Remote control

If the remote control feature is activated (see page 421), you can perform the following Cockpit functions remotely from the ICS:

- Autoset alarm limits
- Initiate a relearning phase
- Audio pause acoustic alarm signals (see page 109)
- Configure alarm limits and ST and arrhythmia settings
- Request timed and continuous recordings

If several devices modify the patient settings of a single Cockpit, the last update is always implemented. For detailed information on performing these functions at the ICS, refer to the instructions for use Infinity CentralStation.

IT applications

Several optional IT applications provide remote access to patient information from the Cockpit. For example, the PatientWatch application (accessible with the Infinity Gateway) allows you to view up to four different bedside monitors that are connected to the Infinity network. If configured accordingly, IT applications are accessible by selecting a tab on the Cockpit. For more information, see "IT applications (options)" on page 449.

Communication management

The following table summarizes how the Cockpit, the M540, and the M500 function under specific circumstances.

<table>
<thead>
<tr>
<th>What happens if...</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>you switch on the M540?</td>
<td>The M540 emits a high-pitched tone followed by two power-up tones, performs a self-test, and displays the New patient? prompt.</td>
</tr>
<tr>
<td>Docking/undocking an M540</td>
<td>Certain functions such as trends, alarm history, profiles, and biomed setup are not accessible for a brief period of time.</td>
</tr>
</tbody>
</table>
Operating concept

<table>
<thead>
<tr>
<th>What happens if...</th>
<th>Behavior</th>
</tr>
</thead>
</table>
| you dock an M540 and it is unable to communicate with the Cockpit? | – An alarm of medium priority sounds at the Cockpit, at the M540, and at the ICS (provided the patient is admitted there).
– The message **M540 communication failure** appears at the Cockpit.
– The M540 continues to monitor the patient and provides acoustic and visual alarm signals. |

<table>
<thead>
<tr>
<th>Alarm behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>an M540 whose acoustic alarm signals have been paused docks to a Cockpit?</td>
</tr>
<tr>
<td>you dock an M540 with a different alarm pause state than that of the Cockpit?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection/power problems</th>
</tr>
</thead>
</table>
| if there is a power failure? | – The LEDs on the front panels indicate that the Cockpit and the M540 are on battery power.
– The Cockpit sounds an alarm of medium priority and switches to battery power for up to 5 minutes before performing a safe shutdown.
– The M540 switches to battery power for up to 3 hours before shutting down. |
| the system cable is disconnected from the power supply or the M500? | – The Cockpit sounds an alarm tone of low priority.
– The Cockpit displays the message **Please plug in system cable** in the header bar and the message **Disconnected from M540** appears in the monitoring area.
– The Cockpit no longer displays any parameters and waveforms. |
Operating concept

<table>
<thead>
<tr>
<th>What happens if...</th>
<th>Behavior</th>
</tr>
</thead>
</table>
| the Cockpit loses communication with the ICS? | When the setting **Enable central station** is activated (see page 421), the following happens at the Cockpit:
 – On the Cockpit the **Alarm volume** setting (see page 404) changes to 100% volume regardless of whether an alarm condition exists or not. The setting **Off** for the **Alarm volume** selection is no longer available. For more information on adjusting the alarm volume, see page 103. Once the communication is restored, the previously selected **Alarm volume** setting is restored.
 – The M540 produces one alert tone.
 – The Cockpit displays the message **Not monitored by central**.
When the setting **Enable central station** is deactivated (see page 421), none of the above features are supported. |
| the Cockpit loses communication with an external device? | – The Cockpit tries to restore the link.
 – If the corresponding function is activated, an alarm sounds and the message **External device disconnected** appears on the Cockpit and ICS (see "External device disconnected alarm control" on page 407). |

Miscellaneous

| the Cockpit and the M540 are monitoring a patient and you put either device in standby mode? | Both devices are put in standby mode. |
| the Cockpit and the M540 are monitoring a patient and you discharge the patient on either device? |
 – The patient is discharged from both devices.
 – The patient discharge is annotated at the Cockpit in the **Alarm history** page with the message **Patient transferred**. |
| a function such as initiating a non-invasive blood pressure measurement is requested at the M540 and almost simultaneously on the Cockpit? | The function is canceled on both devices. |

Loss of power

A loss of power has the following effect:

Operating concept

- The Cockpit switches to battery power for up to 5 minutes before performing a safe shutdown that preserves the integrity of the patient data and reverts back to the user-defined patient default profile.
- A medium-priority alarm is triggered at the Cockpit and the message *please plug in power supply* appears.
- The M540 switches to battery power for up to 3 hours before performing a safe shutdown that preserves the integrity of the patient data and the user settings.

Locked options

The IACS supports several locked options. For a list of options, refer to the instructions for use *Infinity Acute Care System – Monitoring Accessories*.

Temporary options

Temporary options make it possible for an M540 in an IACS configuration to perform the intended functions together with the Cockpit when the devices do not share the same option setup. For example, when an M540 with permanent options docks to an IACS Cockpit that does not have the same options activated, the M540 options temporarily loans these options to the Cockpit.

Temporary options are deactivated when a patient is discharged. However, they are retained if you turn the Cockpit or the M540 off and on.
Secondary display

To extend the display capabilities of a Cockpit, you can connect a secondary display to the DVI connector of the Cockpit using one of two LCOM cable types (DVI to DVI or DVI to VGA), which have been qualified by Dräger:

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Length</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI to DVI</td>
<td>0.91 m (3 ft)</td>
<td>CTLDVI-DL-MM3</td>
</tr>
<tr>
<td></td>
<td>1.52 m (5 ft)</td>
<td>CTLDVI-DL-MM5</td>
</tr>
<tr>
<td></td>
<td>3.04 m (10 ft)</td>
<td>CTLDVI-DL-MM10</td>
</tr>
<tr>
<td></td>
<td>4.75 m (15 ft)</td>
<td>CTLDVI-DL-MM15</td>
</tr>
<tr>
<td>DVI to VGA</td>
<td>0.91 m (3 ft)</td>
<td>CTLDVI-HD-MM3</td>
</tr>
<tr>
<td></td>
<td>1.52 m (5 ft)</td>
<td>CTLDVI-HD-MM5</td>
</tr>
<tr>
<td></td>
<td>3.04 m (10 ft)</td>
<td>CTLDVI-HD-MM10</td>
</tr>
<tr>
<td></td>
<td>4.75 m (15 ft)</td>
<td>CTLDVI-HD-MM15</td>
</tr>
</tbody>
</table>

The secondary display duplicates the content of the Cockpit screen. It does not produce any acoustic alarm signals and does not support any user interaction. A secondary display has to meet certain technical specifications (see page 512). The C500 has a resolution of 1440 x 900 pixels. The C700 has a resolution of 1680 x 1050.

Export protocol

This function allows you to share data with other Dräger and third-party devices such as clinical information and anesthesia record systems and data loggers.

The export protocol connector is located on the P2500/PS250 (see page 23).

Refer to the section "Connected devices" on page 13 whenever you connect third-party devices.
User interface

The following sections describe the user interface of the Cockpit when it is connected to an M540. The screen of a monitoring Cockpit is divided into the following main areas:

A Header bar
B Main menu bar
C Auto view toolbar (if activated)
D Monitoring area

For a more detailed overview of general user interface components of the IACS, refer to the instructions for use Infinity Acute Care System – Medical Cockpit.
Header bar

The blue header bar appears along the top of the Cockpit screen. It is always visible regardless of what is displayed in the monitoring area.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Patient category field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>System data field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Patient name field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Time and date field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Alarm message field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Alarm banner field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The patient category field

The patient category field (A) of the header bar identifies the currently selected patient category. It contains one of the following symbols:
- Adult
- Pediatric
- Neonate

Touching this field opens the Start/Standby... dialog window for accessing the Demographics page (see page 90).

The system data field

The system data field (B) of the header bar contains the following information:
- Device label
- Care unit
- Monitoring mode (for example, OR Alarms) or the battery symbol indicating the battery status for the PS250 or the P2500.

Touching this field opens the System setup dialog with the Biomed access code keypad.

The patient name field

The patient name field (C) of the header bar displays the patient name. Selecting this field opens the Demographics page (see page 89).

The content of the patient name field changes when you select the Code button on the main menu bar to activate a set of user-defined emergency monitoring functions. In this case, the patient data field displays a timer along with a Stop and a Reset button. For more information on the Code function, see page 133.

The date and time field

The data/time field (D) of the header bar displays the current date and time. Selecting this field opens the System setup dialog with the Biomed access code keypad.

The alarm message field

The alarm message field (E) of the header bar is reserved for alarm and technical messages. The background color of the alarm message corresponds to the alarm priority (see page 100).

The following table illustrates how the alarm message field is further subdivided.

<table>
<thead>
<tr>
<th>More...</th>
<th>Alarm message</th>
<th>Alarm message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local technical messages</td>
<td>Network-related messages</td>
</tr>
</tbody>
</table>

A maximum of two messages can be displayed side by side. If more than two patient alarm messages are active simultaneously, the More... button appears. Selecting this button accesses the Current alarms page (see "Viewing current alarm messages" on page 104).
Operating concept

The alarm banner field

The alarm banner field (F) of the header bar (see page 458) indicates the current alarm status. The following are some examples of alarm-related symbols and messages that can appear in this field.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Audio paused plus a countdown timer when you press the yellow fixed key located next to the rotary knob.</td>
</tr>
<tr>
<td></td>
<td>The alarm volume percentage corresponding to the selected alarm volume. The higher the alarm tone, the more the symbol is filled in (50% in the example). If the symbol appears empty, the alarm volume has been turned off (see next banner).</td>
</tr>
<tr>
<td></td>
<td>Audio off to indicate that the alarm volume has been turned off, the Cockpit is in OR mode or monitored by the ICS.</td>
</tr>
<tr>
<td></td>
<td>The message All alarms paused and you select the Alarms... > All alarms paused buttons.</td>
</tr>
<tr>
<td></td>
<td>The message All alarms off and you select the Alarms... > All alarms off buttons.</td>
</tr>
</tbody>
</table>

For a complete list of supported banners, see page 458.

For more detailed information on alarm monitoring, see the "Alarms" chapter.

Monitoring area

The monitoring area of the Cockpit screen contains waveforms and parameter boxes that report the current vital signs of the patient. The monitoring area can also contain dialog windows, mini trends, an auto view toolbar, ST parameters, vent loops, and so on. The appearance of the monitoring area depends on the selected view, which controls the layout and content of the screen (see "Views" on page 65). The appearance of the monitoring area also depends on whether or not the split screen mode or mini trend display is selected (see page 404).

When opening a dialog window, the waveform channels and parameter boxes are reduced to fit on the right side of the screen (see illustration on page 55). This display behavior prevents the vital signs from being obscured while you are performing setup tasks.

Selecting the **Home** button on the main menu bar or pressing the rotary knob closes any open dialog windows and refreshes the screen.
Parameter boxes

Each parameter box contains real-time values of a parameter and a combination of the following information:

- Parameter labels (including dynamic pressure labels)
- Alarm limits (or crossed triangle symbols when the alarm functions are deactivated)
- Units of measure (can be activated/deactivated)
- ECG heart blip (and pacer blip for paced pulses), RRi blip, and SpO2 blip
- Time stamps
- Countdown timers and time stamps for non-invasive blood pressure
- Special source labels (for example, PLS for heart rate signal source for pulse oximetry)
- Parameter-specific message fields for non-invasive blood pressure and SpO2

The amount of information on a screen affects the parameter box display. For example, the following diagram shows a typical expanded SpO2 parameter box when enough space is available for the larger parameter box. The primary parameter value (A) appears bigger than the subordinate parameters (B, C) which are displayed below each other (B, C). The parameter labels (D) appear above the respective parameter values.

The following example shows how the same parameter box changes when more parameters occupy the main screen. Each parameter box has less space to display its content. The primary parameter value (A) still appears bigger than the subordinate parameters (B, C) which now all appear on one line. The parameter labels (D) still appear above the respective values.

When a parameter is in alarm, the parameter box flashes in the color of the alarm priority and a corresponding alarm message appears in the header bar (see "Problem solving" on page 455). The parameter boxes displayed on the Cockpit for each parameter are described in detail in each parameter chapter.

Waveforms

The Cockpit displays a minimum of 6 seconds of waveform data per waveform channel at a sweep speed of 25 mm/s when no dialog windows are open. The amount of displayed waveforms depend on the size of the Cockpit.

When the waveform option is activated, the Cockpit displays up to 16 waveforms.

The following functions allow you to customize the waveforms:
Operating concept

- Changing the colors for individual parameters (see for example how to change the color for ECG on page 195)
- Changing the sweep speeds (see page 391)

Waveforms are drawn from left to right and can contain the following information:

- Signal scales
- Grids
- Units of measure
- Parameter labels
- Pacer spikes
- QRS synchronization markers
- Respiration waveform markers to indicate breath detection
- Banners (see page 54)

NOTE
If the acquired signal does not fit in the waveform channel, the top of the waveform may appear clipped.

Freezing/stopping waveforms

- Select the *Freeze waveforms* button on the main menu bar.

All waveforms stop and the message *Waveforms stopped* appears on each waveform channel. After approximately 60 seconds, the waveforms start scrolling again. To restart the waveforms earlier, select the *Freeze waveforms* button again.

Freezing waveforms does not affect continuous monitoring of all parameters and does not freeze waveforms on the M540.

Supported banners

The Cockpit displays numerous banners that indicate a special monitoring state that may affect certain functionality. For example, when cardiac bypass monitoring is activated, alarms are turned off. The alarm banner field of the header bar turns red and the message *Bypass Audio alarms off* appears.

For a complete list of these banners, see "Banners" on page 458.
Dialog windows and pages

The following diagram shows how the monitoring area appears when you access a dialog window. The left side is reserved for the dialog window while the right side displays the monitoring area (F) with real-time data. A dialog window contains horizontal tabs (B) that open pages. Some pages also contain vertical tabs (E) which access subordinate pages.

Selecting the corresponding button followed by dots on the main menu bar opens the corresponding dialog window. For example, the Alarms... button opens the Alarms dialog window. You can also access parameter-specific dialog windows and pages directly by selecting the corresponding parameter boxes on the main screen. For example, if you select the heart rate (HR) parameter box, the Sensor parameters dialog window with the ECG page appears.

A Dialog window title
B Horizontal tabs – the selected tab appears light blue.
C Button that closes the dialog window.
D Display filter on/off button for switching between a display that shows only connected parameters or one that shows all parameters.
E Vertical tabs for accessing additional pages – the selected tab appears light blue.
F Monitoring area showing vital signs in real time.
G Page that contains groups of related settings in the selected tab.
Main menu bar and quick access toolbar

The following diagram shows the main menu bar with the quick access symbols and a quick-access toolbar. The main menu bar and the quick-access symbols are located along the right edge of the screen and are always visible. The quick-access toolbars remain visible after you select the corresponding quick access symbol.

Main menu bar

The content of the main menu bar can be customized. By adding and removing buttons, the menu bar can contain the most frequently used buttons. However, several buttons with essential functionality are permanently placed on the menu bar and cannot be moved. This fixed button configuration becomes part of a profile. For more information, see page 398.

The following buttons appear on the main menu bar.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarms...</td>
<td>Opens the Alarms dialog window.</td>
</tr>
<tr>
<td>Mark event</td>
<td>Stores an event in the alarm history.</td>
</tr>
<tr>
<td>Code</td>
<td>Executes pre-configured functions during an emergency.</td>
</tr>
<tr>
<td>Views...</td>
<td>Opens the Views dialog window.</td>
</tr>
<tr>
<td>Print screen</td>
<td>Prints the contents of the current screen on a connected laser printer.</td>
</tr>
<tr>
<td>Freeze waveforms</td>
<td>Stops all waveforms for 60 seconds.</td>
</tr>
<tr>
<td>Trends/ Data...</td>
<td>Opens the Trends/Data dialog window.</td>
</tr>
<tr>
<td>Procedures...</td>
<td>Opens the Procedures dialog window.</td>
</tr>
<tr>
<td>Sensor parameters...</td>
<td>Opens the Sensor parameters dialog window.</td>
</tr>
<tr>
<td>NIBP start/stop</td>
<td>Starts or stops an NIBP measurement. The button remains selected during a measurement. To cancel the measurement, select the button again.</td>
</tr>
<tr>
<td>Zero all 1)</td>
<td>Zeroes all pressures</td>
</tr>
<tr>
<td>System setup...</td>
<td>Opens the System setup dialog window.</td>
</tr>
<tr>
<td>Start/Standby...</td>
<td>Opens the Start/Standby dialog window.</td>
</tr>
<tr>
<td>Home</td>
<td>Returns to the main screen and closes any dialog window.</td>
</tr>
</tbody>
</table>

1) This button only appears on the main menu bar of the C700.
Quick access toolbar

Functions that are commonly used are grouped on quick access toolbars for easy access. These quick access functions are accessible by selecting the corresponding quick access symbols on the main menu bar.

To activate a quick access function

1. Select the symbol to open the associated toolbar.
2. Select the desired button from the toolbar to activate the function directly.

The following table lists the quick access symbol and the associated toolbar they open when selected.

<table>
<thead>
<tr>
<th>Quick access symbol</th>
<th>Associated Toolbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Located next to the Alarms... button</td>
<td>All alarms off or All alarms paused (depending on configuration)</td>
</tr>
<tr>
<td>Located next to the Views... button</td>
<td>Auto set all</td>
</tr>
<tr>
<td>Located next to the Trends/Data... button</td>
<td>Show all ECG</td>
</tr>
<tr>
<td></td>
<td>Remote view</td>
</tr>
<tr>
<td></td>
<td>Print screen (C700 only)</td>
</tr>
<tr>
<td>Located next to the Sensor parameters... button</td>
<td>ECG report</td>
</tr>
<tr>
<td></td>
<td>Rest ECG report</td>
</tr>
<tr>
<td></td>
<td>ST report</td>
</tr>
<tr>
<td></td>
<td>Alarm history report</td>
</tr>
<tr>
<td></td>
<td>Trend graph report</td>
</tr>
<tr>
<td></td>
<td>Trend table report</td>
</tr>
<tr>
<td></td>
<td>Calculations report</td>
</tr>
<tr>
<td></td>
<td>Timed wvf. report</td>
</tr>
<tr>
<td></td>
<td>Continuous wvf. report</td>
</tr>
<tr>
<td></td>
<td>Timed recording</td>
</tr>
<tr>
<td></td>
<td>Continuous recording</td>
</tr>
<tr>
<td></td>
<td>Print case summary</td>
</tr>
<tr>
<td>Located next to the Start/Standby... button</td>
<td>Zero all</td>
</tr>
<tr>
<td></td>
<td>NIBP continuous</td>
</tr>
<tr>
<td></td>
<td>Venous stasis</td>
</tr>
<tr>
<td></td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Discharge</td>
</tr>
<tr>
<td></td>
<td>Privacy</td>
</tr>
</tbody>
</table>

Filtering the parameter content

You can filter the content of the displayed parameters with the display filter button ⌶ which appears in the following dialog windows:

- Parameter window of the *Trends/Data* dialog window (see page 160).
- *Sensor parameters* dialog window where it appears to the right of the parameter tabs.
- *Alarms* dialog window (see page 117).
- *Setup* page for configuring the trend pages (see page 165).

The filter button toggles between an unfiltered and filtered display. The filter is activated when the display filter button appears on the light green background. Any parameter that is not being actively monitored is removed from the screen, including parameter-specific setup buttons or tabs.

Selecting the button again changes the background to dark green and deactivates the display filter. All parameters, whether monitored or not, including associated setup buttons or tabs are displayed.

Auto and manual display modes

The user interface has two display modes: Auto view and manual view.

Auto view mode

Auto view mode is a plug-and-play concept where the content of the main screen depends on the connected parameter signals. For example, as soon as you connect an SpO2 MCable, the associated parameters become available for display. When you disconnect the MCable, the parameters are removed from the screen automatically.

Manual view mode

In manual view mode, you can select parameters for display even if they are not yet connected. In this mode, the parameter selection list in the *Auto view* page (see page 65) contains all parameters. The parameters that are not connected appear gray in the parameter selection list. In addition, the display filter button ⌶ is deactivated.

To select the desired display mode

1. Select *System setup*... from the main menu bar.
2. Select the *Screen setup* tab.
3. Select the *Auto view* tab located along the right side of the *System setup* dialog.
4. Select the *Auto* or *Manual* button next to the *Display mode* menu selection.

NOTE
The NIBP parameter is always displayed. The M540 does not detect the connection status for this parameter.
Auto view setup toolbar

When the auto view mode is activated (see page 392), the auto view setup toolbar appears along the bottom of the screen. The auto view setup toolbar is for configuring the parameter priority and display status of a parameter. The auto view setup toolbar is also visible whenever you select a view that contains an auto view component.

It functions dynamically with the Auto view page (see page 392) where you select the maximum amount of ‘waveforms’ and ‘parameter box’ fields and determine the parameter priority. Any changes made on the auto view setup toolbar are reflected on the Auto view page and vice versa.

Customizing the display

You can control the screen brightness, select how to interact with the Cockpit, and customize the monitoring area to suit your clinical workflow needs.

Touch screen versus mouse

You can interact with the Cockpit using the touch screen or a mouse. If you want to use a mouse but cannot see the cursor after the mouse has been connected, press the Alt and F10 keyboard keys simultaneously to display the cursor.

Screen brightness

You can control the brightness of the Cockpit screen by selecting night and day mode (see page 391). Night mode reduces the luminance of the screen so it is less disturbing to a patient while providing enough contrast for the clinical staff. During night time mode, the entire background of the screen appears almost black. All buttons turn dark gray.

Calibrating the touch screen

If the touch screen of the Cockpit is out of alignment, you can calibrate it. During the calibration of the screen, no waveforms are displayed on the Cockpit. Therefore, never calibrate the screen while monitoring a patient.

To calibrate the touch screen

1. Press the rotary knob until the Calibrate Touch Screen popup appears (requires several seconds).
2. Select the Calibrate button in the popup or press the rotary knob again to access the calibration screen.
3. Touch the red dots that appear on the screen in sequence.
4. Select the green check mark symbol ✓ to complete the calibration procedure.
Operating concept

Cockpit screen in split screen mode

The following diagram shows the Cockpit display when the following options/features are activated:

- The web enabled layouts option is unlocked.
- The split screen mode is activated (see page 393).

The monitoring area of the Cockpit is reduced to accommodate an additional panel (E). The larger right side continues to display the real-time parameters while the left panel displays either a trend table, ventilation loops, ECG show all page, ECG/ventilation, ECG/ST, or ST parameters (see page 392). If the web-enabled IT option is also activated, this panel also displays IT applications that are accessible using IT tabs (see page 63).

The following diagram shows how the split screen mode divides up the screen.

A Header bar
B Main screen menu bar
C Auto view setup toolbar (if activated)
D Monitoring area with real-time vital signs
E Split screen panel (content depends on user-selection, and activation of web-enabled layouts option)
Cockpit split screen mode with mini trends

The following diagram shows the Cockpit display when the following options/features are activated:

- The web enabled layouts option is unlocked and the Split screen feature is activated (see page 393).
- The Mini trends feature is activated (see page 393).

If the split screen mode is not activated, the mini trend panel shifts to the left edge of the screen. Mini trends are updated continuously. NIBP mini trends can either be represented in tabular or graphical format (see page 393). All other parameters appear only as graphical mini trends.

- **A** Header bar
- **B** Main screen menu bar
- **C** Auto view setup toolbar (if activated)
- **D** Monitoring area with real-time vital signs
- **E** Split screen panel (content depends on user-selection)
- **F** Mini trend panels
Cockpit split screen mode with multi-tab split screen

The following diagram shows the Cockpit display when the *Multi-tab split screen* feature is activated by itself (see page 393).

- **A** Header bar
- **B** Main screen menu bar
- **C** Monitoring area with real-time vital signs
- **D** *Multi-tab split screen* – three tabs whose content is configurable. To configure the *Multi-tab split screen*, see page 401.

Cockpit split screen mode with mini trends and IT tabs

The Cockpit supports IT applications that are accessible via tabs.

The following diagram shows the Cockpit display when the following options are unlocked and the features are activated:

- The web enabled layouts option is unlocked and the **Split screen** feature is activated (see page 393).
- The web enabled IT tabs option is unlocked
- The **Mini trends** feature is activated (see page 393).

Once the application is configured and the IT application feature is activated (see page 425), the corresponding tab appears to the left of the monitoring area. The **Patient** tab (G) always appears as the top tab. It always returns you to the main screen of the Cockpit for viewing the real-time parameter display. For detailed information on setting up IT tabs, refer to the DrägerService technical documentation.

Diagram Labels:

- A Header bar
- B Main screen menu bar
- C Auto view setup toolbar (if activated)
- D Monitoring area with real-time vital signs
- E Mini trend panel
- F Split screen panel (content depends on the user-selection)
- G IT tabs
Parameter priority

The parameter priority determines what position a parameter occupies on the screen. The number of parameters appearing as waveforms and parameter boxes depends also on the selected Waveforms setting (see page 393).

In the Auto view page (see page 392), you determine the display location and display status of each parameter. In auto view mode, you can also use the auto view setup toolbar to change the parameter priority (see page 395). In manual mode, you can only change the parameter priority in the Auto view page.

Configuring the parameter priority and display

The location of a parameter in the window determines not only where a parameter appears on the screen but also how it is displayed. Parameters are arranged in descending order in the window and occupy the same position on the screen. For example, the top parameter in the parameter selection window occupies the top spot on the main screen. For more information see, "Configuring parameters for display” on page 394.

Parameter priority list

The following list shows the default parameter priority list. Pressures without assigned labels appear as GP1, GP2, GP3, or GP4.

1 ECG
2 ECG2
3 SpO2
4 SpO2/CO-Ox
5 RRI
6 ART
7 PA
8 CVP
9 RA
10 LV
11 LA
12 RV
13 ICP
14 NIBP
15 T (temperature)
16 T1
17 CO2 (from Infinity MCable – Mainstream CO2)
18 C.O. (not available in neonatal mode)
19 GP1
20 GP2
21 GP3
22 GP4
23 SvO2
24 etCO2 (from ventilators using the device connectivity cable)
25 Vent
26 Paw
Operating concept

Views

Each Cockpit supports eight pre-configured Dräger views and, as an option, up to eight custom views. Views control the content and appearance of the screen.

During a monitoring session, you can always switch to a different view to adjust the screen layout to the needs of the current monitoring session.

Views can be shared among various profiles which are pre-configured setups. This sharing of views eliminates time-consuming setup tasks. You can also assign views to each profile (see page 434).

Selecting a view

You can reconfigure the screen by selecting a different view.

To select a view

1. Select the Views... button on the main menu bar.
2. Select the Views tab if it is not already selected to open a popup with pre-configured views.
3. Select the desired view from the Custom views (option) or the Draeger views selection lists.

The monitoring area is configured accordingly.

The view editor

The view editor (option) allows authorized personnel to create and modify customized views. Dräger views cannot be modified. Access to the view editor is password-protected. For more information, see page 402.
Profiles/status

Cockpits are adaptable to different care areas. This adaptability is partially due to profiles which allow clinical personnel to create unique setups for the patient population of specific care areas.

Profiles are divided into the following two categories:
- Patient and default profiles
- System profiles (see page 72)

Patient and default profiles

A patient profile consists of user-defined settings which are customized for each patient category (adult, pediatric, neonate). For example, a profile may be unique to an adult patient population in a high-acuity OR setting, while another caters to neonatal patients in a low-acuity OR setting. A profile ‘remembers’ patient and device settings for future use. With a profile, time-consuming setup tasks that would otherwise have to be repeated for each monitoring session are eliminated.

For each patient category, you can set up and save five unique profiles. Included in the five profiles is a Dräger default profile that cannot be changed.

The Dräger default profile is activated when the Cockpit is booted up for the very first time, new software is installed or factory defaults are restored.

The user-defined patient default profile is activated whenever a new patient category is selected. In addition, the patient default profile is activated after patient data are transferred physically or over the network.

The selected patient profile remains unchanged under the following circumstances:
- When the Cockpit is turned off and on again
- When a patient is discharged
- When a monitor transitions out of standby mode
- When a monitor transitions out of privacy mode

Whenever an M540 is docked in an IACS configuration, the profile of the connected Cockpit overwrites any M540 profile settings. The only exceptions are the following profile settings which remain unchanged on the M540:
- ECG cable type
- SpO2 sensitivity mode for Masimo
- SpO2 response mode for Nellcor
- Patient category (adult, pediatric, neonatal)
- Invasive blood pressure labels

After a patient discharge, all patient data are deleted and the current default profile is restored.
Settings included in a profile

The following table lists all of the settings included in a patient profile. For details on each setting, such as available selections and detailed descriptions of the setting, refer to the cross-referenced pages.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter-specific profile settings</td>
<td></td>
</tr>
<tr>
<td>ECG (see page 194)</td>
<td>Size [mV/cm]
Size All ECG [MV/cm]
Pulse tone volume
Tone source
HR source
Waveforms
Leads
Filter
Pacer detection
QRS sync marker
ARR Processing
Resp. monitoring
Color</td>
</tr>
<tr>
<td>Arrhythmia (see page 206)</td>
<td>ARR mode
Alarm archive setting
Alarm priority (high, medium, low or off)</td>
</tr>
<tr>
<td>Arrhythmia alarm settings (see page 122)</td>
<td>Alarm priority
Rate
Count</td>
</tr>
<tr>
<td>Temperature (see page 266)</td>
<td>Color
Alarm on/off setting
Alarm limits
Alarm archive setting</td>
</tr>
<tr>
<td>SpO2 (Nellcor) (see page 258)</td>
<td>Pulse tone volume
Tone source
Waveform size [%]
SatSeconds alarm
SpO2 desat alarm (neonatal mode only)
Color
Alarm on/off setting
Alarm limits
Alarm archive setting and alarm grade for SpO2 check sensor alarm
Alarm archive setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST (see page 215)</td>
<td>ST monitoring
ST lead1
ST lead2
ST lead3
ST Mini Trend
TruST 12-lead
Event duration [s]
Selected ISO point
Selected ST measuring point
Alarm on/off setting
Alarm limits
Alarm archive setting</td>
</tr>
<tr>
<td>Arrhythmia alarm settings</td>
<td>Alarm priority
Rate
Count</td>
</tr>
</tbody>
</table>
Operating concept

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
</table>
| SpO2 (Masimo) | *Pulse tone volume*
 Tone source
 Averaging time
 SpO2 desat alarm (neonatal mode only)
 SpO2 pulse Co-Ox mini trend
 SpHB Cal
 FastSat mode
 Waveform size [%]
 Color
 Alarm on/off setting
 Alarm limits
 Alarm archive setting |
| SpO2 Masimo rainbow SET (see page 246) | *Averaging time*
 Parameter display
 PVI averaging time
 Color
 Alarm on/off setting
 Alarm limits
 Archive setting and alarm grade for SpO2 sensor off alarm
 Alarm archive setting |
| Non-invasive blood pressure (see page 278) | *Interval time [min]*
 Inflation mode
 Chime
 Color
 Alarm on/off setting
 Alarm limits
 Alarm archive setting |
| Invasive blood pressure | *Scale*
 Filter
 Large mean
 Min. scale (ICP)
 Color
 Alarm on/off setting
 Alarm limits
 Alarm archive setting |
| Respiration (see page 228) | *Resp. lead*
 Mode
 Size [%]
 Resp. marker
 Resp. monitoring
 Coincidence detect
 RRI apnea time [s]
 Apnea archive
 Color
 Alarm on/off setting
 Alarm limits
 Alarm archive setting |
| Cardiac output (see page 312) | *Catheter type*
 Catheter size
 Injectate volume [cc]
 C.O. mode
 Alarm on/off setting (Tblood only)
 Alarm limits (Tblood only)
 Alarm archive setting (Tblood only) |
Operating concept

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Scale</td>
</tr>
<tr>
<td></td>
<td>Gas compensation</td>
</tr>
<tr>
<td></td>
<td>RRc apnea time [s]</td>
</tr>
<tr>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td>Alarm on/off setting</td>
</tr>
<tr>
<td></td>
<td>Alarm limits</td>
</tr>
<tr>
<td></td>
<td>Alarm archive setting</td>
</tr>
<tr>
<td>Trends</td>
<td>Graphical trend setup</td>
</tr>
<tr>
<td></td>
<td>Tabular trend setup</td>
</tr>
<tr>
<td>Reports</td>
<td>Case summary setup</td>
</tr>
<tr>
<td>External device profile settings</td>
<td></td>
</tr>
<tr>
<td>External devices – CCO/SvO2 (see page 344)</td>
<td>Parameter 1 (paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 2 (paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 3 (paw)</td>
</tr>
<tr>
<td></td>
<td>Paw scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>External devices – Paw (see page 385)</td>
<td>Parameter 1 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 2 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 3 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Paw scale</td>
</tr>
<tr>
<td></td>
<td>Flow scale</td>
</tr>
<tr>
<td></td>
<td>CO2 Scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td></td>
<td>Color (vent, paw, CO2)</td>
</tr>
<tr>
<td>External devices – ventilator (Medibus X) (see page 347)</td>
<td>Parameter 1 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 2 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 3 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Paw scale</td>
</tr>
<tr>
<td></td>
<td>CO2 Scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td></td>
<td>Color (vent, paw, CO2)</td>
</tr>
<tr>
<td>Parameter Included settings</td>
<td></td>
</tr>
<tr>
<td>External devices – Anesthesia workstation (see page 347)</td>
<td>Agent pbox</td>
</tr>
<tr>
<td></td>
<td>O2 pbox</td>
</tr>
<tr>
<td></td>
<td>etCO2 pbox</td>
</tr>
<tr>
<td>External devices – CO2 (see page 387)</td>
<td>Parameter 1 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 2 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Parameter 3 (vent, paw)</td>
</tr>
<tr>
<td></td>
<td>Paw scale</td>
</tr>
<tr>
<td></td>
<td>Flow scale</td>
</tr>
<tr>
<td></td>
<td>CO2 Scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>External devices – PV Loop (see page 383)</td>
<td>Loop draw</td>
</tr>
<tr>
<td></td>
<td>Paw scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td>External devices – FV Loop (see page 383)</td>
<td>Loop draw</td>
</tr>
<tr>
<td></td>
<td>Flow scale</td>
</tr>
<tr>
<td></td>
<td>Vol scale</td>
</tr>
<tr>
<td>External devices – Loops (see page 383)</td>
<td>Loop draw</td>
</tr>
<tr>
<td></td>
<td>Scale [uV]</td>
</tr>
<tr>
<td></td>
<td>BIS secondary parameter</td>
</tr>
<tr>
<td>External devices – BIS (see page 325)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display temperature</td>
</tr>
<tr>
<td>External devices – NMT (see page 331)</td>
<td></td>
</tr>
</tbody>
</table>

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Alarm profile settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm system settings</td>
<td>All alarms paused</td>
</tr>
<tr>
<td></td>
<td>Alarm limits display</td>
</tr>
<tr>
<td></td>
<td>Cardiac bypass</td>
</tr>
<tr>
<td>OR Alarms</td>
<td>Alarm bar enabled</td>
</tr>
<tr>
<td></td>
<td>Alarm validation</td>
</tr>
<tr>
<td></td>
<td>Pacer detection mode</td>
</tr>
<tr>
<td></td>
<td>ASY/VF alarms</td>
</tr>
<tr>
<td></td>
<td>NIBP/SpO2 interlock</td>
</tr>
</tbody>
</table>

Config. (see page 404)

Alarm volume and tone settings (see page 407)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm type</td>
<td></td>
</tr>
<tr>
<td>Alarm priority (high, medium, low or off)</td>
<td></td>
</tr>
<tr>
<td>Pulse tone volume</td>
<td></td>
</tr>
<tr>
<td>Attention tone volume</td>
<td></td>
</tr>
<tr>
<td>Alarm volume</td>
<td></td>
</tr>
<tr>
<td>Continuous recording</td>
<td></td>
</tr>
<tr>
<td>Alarm volume off</td>
<td></td>
</tr>
<tr>
<td>Continuous NIBP mode</td>
<td></td>
</tr>
<tr>
<td>All alarms off</td>
<td></td>
</tr>
</tbody>
</table>

Code settings (see page 410)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto display settings</td>
<td>Auto display mode</td>
</tr>
<tr>
<td></td>
<td>Waveforms</td>
</tr>
<tr>
<td></td>
<td>Layout (right/left)</td>
</tr>
<tr>
<td></td>
<td>Pressure overlap</td>
</tr>
<tr>
<td></td>
<td>Parameter boxes</td>
</tr>
<tr>
<td></td>
<td>Split screen</td>
</tr>
<tr>
<td></td>
<td>Mini trends</td>
</tr>
<tr>
<td></td>
<td>NIBP trend</td>
</tr>
<tr>
<td></td>
<td>Toolbar</td>
</tr>
<tr>
<td>Configurable views</td>
<td>Up to eight available, configurable views</td>
</tr>
</tbody>
</table>

Screen profile settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedside setup</td>
<td>Airway adapter</td>
</tr>
<tr>
<td></td>
<td>Patient profile selection</td>
</tr>
</tbody>
</table>

Multi-tab split screen (see page 401)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR Alarms</td>
<td>Alarm bar enabled</td>
</tr>
<tr>
<td></td>
<td>Alarm validation</td>
</tr>
<tr>
<td></td>
<td>Pacer detection mode</td>
</tr>
<tr>
<td></td>
<td>ASY/VF alarms</td>
</tr>
<tr>
<td></td>
<td>NIBP/SpO2 interlock</td>
</tr>
</tbody>
</table>

General profile settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia and BIS graphical trend</td>
<td>Configuration order of parameters</td>
</tr>
<tr>
<td>Open lung tool</td>
<td></td>
</tr>
</tbody>
</table>

Procedures profile settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wedge (see page 295)</td>
<td>Scale</td>
</tr>
<tr>
<td></td>
<td>Sweep speed [mm/s]</td>
</tr>
<tr>
<td></td>
<td>Reference waveform</td>
</tr>
<tr>
<td>Recruitment (see page 167)</td>
<td>Parameter selection</td>
</tr>
</tbody>
</table>

Biomed profile settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Included settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedside setup</td>
<td>Airway adapter</td>
</tr>
<tr>
<td></td>
<td>Patient profile selection</td>
</tr>
</tbody>
</table>

70 Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Settings not included in a profile

The following settings are not included in a profile and must be configured separately. These settings remain unchanged until they are manually changed again by the user.

<table>
<thead>
<tr>
<th>Parameter/system feature</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-invasive blood pressure</td>
<td>Venous stasis</td>
</tr>
<tr>
<td></td>
<td>Continuous mode</td>
</tr>
<tr>
<td>ST</td>
<td>ST relearn</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>Relearn</td>
</tr>
<tr>
<td>Respiration</td>
<td>Relearn</td>
</tr>
<tr>
<td>Invasive blood pressure</td>
<td>Selected labels from M540</td>
</tr>
<tr>
<td>etCO2 (Infinity MCable – Mainstream CO2)</td>
<td>Atm. pressure</td>
</tr>
<tr>
<td>Alarm history</td>
<td>Filter settings (All, Arrhythmia, High-priority, Medium-priority, Low-priority, Time, Priority, Message)</td>
</tr>
<tr>
<td>System setup... > General settings</td>
<td>All alarms paused</td>
</tr>
<tr>
<td></td>
<td>SpO2 alarm delay</td>
</tr>
<tr>
<td></td>
<td>Alarm group</td>
</tr>
<tr>
<td>Volume/ Tone</td>
<td>"Audio off" reminder</td>
</tr>
</tbody>
</table>
System profiles

System profiles are system-wide settings. System profiles are divided into the following two categories:

- **Shared settings** – these settings can be exported and imported using a USB memory stick (see page 436 for information).
- **Install persist settings** – these settings are not affected by a patient discharge, software upgrade or by turning the Cockpit off and then on again.

Most system settings can be shared and are also install persist settings. However, some settings are install persist settings only which are identified in the following table. For details on each setting, such as available selections and detailed descriptions of each setting, refer to the cross-referenced pages.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Shared and install persist settings</th>
<th>Install persist only settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen setup settings (see page 391)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Night time</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>General alarm settings (see page 404)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External device disconnected alarm control</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>M540 alarm settings (see page 412)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep device label</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transport alarm volume</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transport pulse tone volume</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tone and volume alarm settings (see page 404)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio pause: Quiet mode</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Minimum alarm volume</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Audio off</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>All alarms off</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tone set</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Recorder settings (see page 414)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Waveform selection</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Waveform 1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Waveform 2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alarm waveform</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Setting</td>
<td>Shared and install persist settings</td>
<td>Install persist only settings</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Primary recorder</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Secondary recorder</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Report setup settings (see page 416)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Waveform delay [s]</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Waveform duration [s]</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trend duration [hr]</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Table interval [min]</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biomed printer settings (see page 423)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printer IP address</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Printer type</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paper size</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biomed patient monitor settings (see page 419)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French NFC mode</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OR Alarms</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HLM/Bypass sync</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomed country settings (see page 417)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Time zone</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Daylight savings</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biomed unit of measure settings page (see page 418)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>etCO2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SpHb</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biomed patient monitor settings page (see page 419)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External display</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biomed Infinity network settings (see page 422)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Operating concept

<table>
<thead>
<tr>
<th>Setting</th>
<th>Shared and install persist settings</th>
<th>Install persist only settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline detection</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Primary DNS</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Biomed hospital network settings (see page 422)

<table>
<thead>
<tr>
<th>Setting</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>X</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>X</td>
</tr>
<tr>
<td>Gateway</td>
<td>X</td>
</tr>
<tr>
<td>Primary DNS</td>
<td>X</td>
</tr>
</tbody>
</table>

Biomed network settings (see page 421)

<table>
<thead>
<tr>
<th>Setting</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring unit ID</td>
<td></td>
</tr>
<tr>
<td>Monitoring unit label</td>
<td>X</td>
</tr>
<tr>
<td>Care unit label</td>
<td>X</td>
</tr>
<tr>
<td>Device label</td>
<td>X</td>
</tr>
<tr>
<td>Hospital name</td>
<td>X</td>
</tr>
<tr>
<td>Enable central station</td>
<td>X</td>
</tr>
<tr>
<td>Enable remote control</td>
<td>X</td>
</tr>
<tr>
<td>Enable remote silence</td>
<td>X</td>
</tr>
</tbody>
</table>

Biomed IT tab settings (see page 428)

(identical for the Innovian, PatientWatch, Symphony, Web browser, Application, and MegaCare pages)

<table>
<thead>
<tr>
<th>Setting</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT tabs</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>X</td>
</tr>
<tr>
<td>URL</td>
<td>X</td>
</tr>
<tr>
<td>Block Popups</td>
<td>X</td>
</tr>
<tr>
<td>Full Trust</td>
<td>X</td>
</tr>
<tr>
<td>Tab visible</td>
<td>X</td>
</tr>
</tbody>
</table>

Biomed Citrix settings (see page 427)

<table>
<thead>
<tr>
<th>Setting</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of up to 32 applications</td>
<td></td>
</tr>
<tr>
<td>Value of up to 32 applications</td>
<td>X</td>
</tr>
<tr>
<td>Auto logoff</td>
<td>X</td>
</tr>
<tr>
<td>Tab visible</td>
<td>X</td>
</tr>
</tbody>
</table>

Graphical trend settings (see page 162)

<table>
<thead>
<tr>
<th>Setting</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Graphs</td>
<td></td>
</tr>
</tbody>
</table>
Operating concept

<table>
<thead>
<tr>
<th>Setting</th>
<th>Shared and install persist settings</th>
<th>Install persist only settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grids</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tabular trend settings (see page 170)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Calculation parameters (see the ‘Calculations’ chapter starting on page 143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All hemodynamic parameters</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>All oxygenation/ventilation parameters</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lab calculation parameter selections (see page 148)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PaCO2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PaO2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SaO2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hgb</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Body size calculations selections (see page 144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wt (weight)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ht (height)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Drug profile settings (see page 155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For all 40 pre-configured drug profiles, the following settings are stored as part of each individual drug profile:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of the drug:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dose units</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Managing profiles and views

Each patient category (adult, pediatric, neonatal) has its own unique profile. For example, if you activate the neonatal patient category, only the profiles defined for the neonatal patient category are selectable. This is unlike views which can be shared among all patient categories.

The following profile functions are available (for detailed instructions, see "Profile setup" on page 430):

- Selecting a profile
- Saving a profile (password-protected)
- Transferring a profile (password-protected)
- Deleting a profile
- Entering a profile name and description
- Assigning a profile to a default view (default profiles are automatically activated after a restart or a patient discharge).

Transferring profiles

Profiles can be transferred to other Cockpits in the password-protected Profile transfer page. This eliminates time consuming duplicate setup tasks. You can transfer profiles either over the network or with a USB memory stick (see page 436).
Standby mode

You can temporarily interrupt patient monitoring by placing the Cockpit and the M540 in standby mode. Selecting standby mode on the Cockpit automatically activates standby mode on the M540 and vice versa. Likewise, taking a patient out of standby on one device does the same at the other device.

Standby mode has the following effect:

- All patient data are removed from display on the Cockpit and the M540.
- All monitoring (including acoustic and visual alarm signals) are suppressed.
- Active alarms are considered acknowledged.
- All recordings are canceled.
- The banner *Standby – Touch Screen to resume monitoring* is displayed in the center of the screen.

To place the Cockpit in standby mode

1. Select the symbol next to the Start/Standby... button on the main menu bar to display the Standby toolbar.
2. Select the Standby button on the toolbar.

or

1. Select the Start/Standby... button on the main menu bar to display the Standby dialog window.
2. Select the Start tab if it is not already selected.
3. Select the Standby button next to the menu selection Monitor.

NOTE

If configured to appear on the main menu bar, the Standby button is also accessible on the main menu bar. For more information, see page 398.

The banner *Standby – Touch Screen to resume monitoring* appears in the center of the Cockpit screen.

To take the Cockpit out of standby mode

- Touch the screen to resume monitoring the vital signs of the patient.
Privacy mode

Privacy mode is only possible when the patient is admitted at the Infinity CentralStation (ICS). In privacy mode, patient monitoring continues but the patient data are removed from the Cockpit and the M540 and only appears on the ICS.

Selecting privacy mode on the Cockpit automatically activates privacy mode on the M540 and vice versa. Likewise, taking a patient out of privacy mode on one device does the same at the other device.

Privacy mode is canceled automatically when the connection to the Infinity network is disrupted.

Activating privacy mode has the following effect:

- All patient data are removed from the Cockpit and the M540 displays, but continue to be displayed at the ICS.
- The alarm bar is deactivated.
- Acoustic alarm signals are only provided at the ICS.
- The banner Privacy Touch Screen to resume monitoring is displayed in the center of the Cockpit screen.

To place the Cockpit into privacy mode

1. Select the symbol next to the Start/Standby button on the main menu bar.
2. Select Privacy on the toolbar.

or

1. Select the Start/Standby... button on the main menu bar.
2. Select the Start tab if it is not already selected.
3. Select Privacy next to the menu selection Display.

NOTE

If configured to appear on the main menu bar, the Privacy button is also accessible on the main menu bar. For more information, see page 398.

The banner Privacy Touch Screen to resume monitoring is displayed in the center of the Cockpit screen.

To take the Cockpit out of privacy mode

- Touch the screen to activate the display of the patient data.
Assembly and preparation

Assembly overview 80
Docking/undocking the M540 81
M500 front view (M540 docked) 81
M500 side view (M540 undocked) 81
Locking/unlocking the M540 82
Connecting the system cables 83
Connecting the system cable to the PS250 / P2500 and the Cockpit 83
Connecting the system cable to the PS250 / P2500 and the M500 84
Mounting the Infinity MCable – Masimo SET/Masimo rainbow SET/ Nellcor OxiMax 85
Assembly overview

This chapter describes the following basic assembly tasks:
- Docking/undocking the M540 from the M500
- Locking/unlocking the M540 into the M500
- Connecting/disconnecting the system cables

IACS components are compatible with commercially available mounting solutions.

Commercially available mounting solutions

Various mounting solutions are available. It is the responsibility of the hospital to install, test, and ensure the proper and safe operation of any mounting solution.

Contact your Dräger representative for specific approved mounting solutions.

CAUTION

Avoid mounting solutions that could impede airflow since the M500, PS250 / P2500 require adequate airflow to dissipate heat. In addition, when mounting the PS250 / P2500, always position it vertically for adequate heat dissipation.

CAUTION

Check the weight ratings of the commercially available mounts to avoid injuring the patient or damaging the device.
Docking/undocking the M540

The following diagram shows the front and side panels of the M500 which holds the M540 in place.

M500 front view (M540 docked)

- A: M500 locking tab
- B: Release buttons for removing the M540
- C: M540 patient monitor
- D: M500
- E: Swivel mount (optional) and mounting clamp

To dock the M540

1. Align the curved portion of the M540 with the curved portion of the M500.
2. Press the M540 (C) into the M500 (D) until it 'clicks' into place.
3. Push the locking tab (A) of the M500 towards the front, to the locked position to fasten the M540 into place.

To lock the M540 into place permanently, see "Locking/unlocking the M540" on page 82.

To undock the M540

1. Push the locking tab (A) of the M500 towards the back. If the locking tab does not move, it has been permanently locked. See page 82 for information on how to unlock the locking tab.
2. Hold the M540 firmly and press one of the release buttons (B - see arrow) of the M500.
3. Pull the M540 (C) out of the M500 (D).
Locking/unlocking the M540

You can lock the M540 permanently in the M500 to prevent anyone from undocking it.

To lock the M540 into place

1. Push the locking tab (D) of the M500 towards the front. This prevents you from undocking the M540. If you push the locking tab back, you can undock the M540 again.

2. Insert the 2 mm hex wrench tool (A) into the middle hole (B) on the locking tab and turn it clockwise to the locked position. The locking tab is fixed and you cannot remove the M540 unless you ‘unlock’ it again using the hex wrench tool.

To unlock the M540

1. Insert the 2 mm hex wrench tool (A) into the middle hole (B) on the locking tab and turn it counterclockwise to the unlocked position.

2. Push the locking tab (D) back to unlock the release buttons (C) on the M500 to undock the M540.
Connecting the system cables

Connecting the system cables involves 2 main steps:

– Connecting a system cable to the PS250 / P2500 and the Cockpit.
– Connecting a system cable to the PS250 / P2500 and the M500.

Connecting the system cable to the PS250 / P2500 and the Cockpit

1. Connect one end of the system cable to the system connector on the back of the Cockpit (refer to the instructions for use Infinity Acute Care System – Medical Cockpit).

2. Connect the other end of the system cable to one of the two PS250 / P2500 system connectors (A).
Assembly and preparation

Connecting the system cable to the PS250 / P2500 and the M500

1 Connect one end of the system cable (B) to the M500 system connector.

2 Connect the other end of the system cable to one of the two PS250 / P2500 system connectors (see diagram on page 83).
Assembly and preparation

Mounting the Infinity MCable – Masimo SET/Masimo rainbow SET/ Nellcor OxiMax

The following diagram shows how a Masimo MCable can be mounted to the M540. The Nellcor OxiMax MCable can be mounted in the same way.

Side view (connectors)

A M540
B Tabs of the MCable mount adapter that lock into the side of the M540.
C MCable mount
D Cable end of the MCable
E Blue SpO2 connector
F Indentations for locking the MCable mount adapter
G Intermediate cable or reusable SpO2 sensor which connects directly to MCable

Bottom view

A M540
B MCable mount
C Intermediate cable or reusable SpO2 sensor which connects directly to MCable
D Cable end of the MCable
E Blue SpO2 connector
F Indentations for locking the MCable mount adapter
Assembly and preparation

To attach the MCable mount adapter
Follow these steps to attach the MCable to the M540:

1. Make sure the cable end of the MCable (D) mount adapter (C) points in the same direction as the connector side of the M540.
2. Align the tabs on the mount adapter (B) with the indentations on the M540 and push firmly until the mount adapter clicks in place.
3. Connect the MCable (D) to the blue SpO2 connector on the M540.

To remove the MCable mount adapter

1. Insert a flat head screwdriver (or equivalent tool) between the indentations for locking the MCable mount adapter (F).
2. Gently lift to unhinge the adapter.
Getting started

Overview .. 88
Turning the IACS on/off 88
Viewing demographic data 89
Admitting a patient 90
Admitting a patient using Get HIS 91
Discharging a patient 91
Patient categories 92
Selecting the patient category 93
Getting started

Overview

This chapter describes the necessary steps to start monitoring a patient on the IACS.

Specifically, this chapter describes how to:

– Turn the IACS on/off
– Admit/discharge a patient on the Cockpit
– Change the patient category

Turning the IACS on/off

Before monitoring a patient on the IACS, the Cockpit and the M540 must be turned on. The following steps assume that the M540 has been docked in the M500 (for information see, "Docking/undocking the M540" on page 81).

To turn the Cockpit on

- Press the on/off key (B) of the Cockpit.

The LEDs (A) and the on/off key light up green. The Cockpit emits a power-up tone and performs a self-test. After a brief moment, the Dräger startup screen appears before the Cockpit main screen appears.

To turn the M540 on

- Press the on/off key (C) of the M540.

The M540 emits a high-pitched tone followed by two power-up tones, performs a self-test, and displays the New patient prompt. Select Discharge to delete the previous patient data or Cancel to continue monitoring the patient and append the new data to the previous data set. The main screen appears.

The acoustic alarm signals are paused for 2 minutes.
Getting started

To turn the Cockpit off
1 Press the on/off key \(\text{\(\text{•} \)} \) located in the lower left corner of the Cockpit
2 Select the Shutdown button in the dialog window.

To turn the M540 off
1 Press and hold the on/off \(\text{\(\text{•} \)} \) key. The power off dialog window appears.
2 Select the Shutdown button in the dialog window.

Viewing demographic data

The following diagram shows the Demographics page of the Cockpit where you can perform the following functions:

- Admit a patient manually (see page 90)
- Admit a patient over the network via the Get HIS function (see page 91)
- Discharge a patient (see page 91)
- Change the patient category (see page 93)

A Demographics tab
B Patient name keyboard symbol
C Patient ID keyboard symbol
D Physician name keyboard symbol
E Get HIS button
F Patient category buttons (Adult, Pediatric, Neonate)
G Birth date fields
H Admit date fields
I Gender fields
J Weight keypad symbol
K Height keypad symbol

All demographic data entered on the Demographics page are available to the network. Demographic data are not deleted when you turn the Cockpit off and on. To delete demographic data, discharge the patient.
Admitting a patient

You can admit a patient at the Cockpit manually by entering the demographic data on the Demographics page.

You can also admit a patient over the network by pulling the data from an HL7/ADT interface (see "Admitting a patient using Get HIS" on page 91). This is only possible if the M540 is docked, the IACS is connected to the Infinity network, and an Infinity Gateway Suite (Gateway) is present. The Gateway communicates with the network and the HL7/ADT server.

When a patient is admitted, the profile for the selected patient category is assigned with patient settings already setup. Profiles eliminate repetitive and time-consuming setup tasks.

To admit a patient manually

In the following steps, the letters in parentheses refer to the diagram of the Demographics page (see page 89).

1. Touch the left most field on the header bar of the Cockpit to access the Demographics page.

 or

1. Select Start/Standby... on the main menu bar.

2. Select the Demographics tab (if not already selected).

3. Enter the patient name – use the symbol (B) next to the Patient name field to activate an on-screen keyboard for entering the patient name (up to 25 alphanumeric characters).

4. Enter the patient ID – use the symbol (C) next to the Patient ID field to activate an on-screen keyboard for entering the ID number (up to 12 alphanumeric characters).

5. Enter the name of the physician – use the symbol (D) next to the Physician name field to activate an on-screen keyboard for entering the name of the physician (up to 12 alphanumeric characters).

6. Select the desired patient category (F) – Adult, Pediatric, or Neonate.

7. Enter the birthday (G) – day, month, year.

8. Enter the admit date (H) – day, month, year.

9. Select the gender (I) – unknown, male, female.

10. Enter the weight of the patient – use the keypad symbol (J) to activate an onscreen numeric keypad for entering the weight of the patient (see page 92 for supported weight ranges).

11. Enter the height of the patient – use the keypad symbol (K) to activate an onscreen numeric keypad for entering the height of the patient (see page 92 for supported height ranges).

WARNING

Monitors in a care area may seem identical but may use different default alarm settings because of different profile assignments. After admitting a patient, always verify that the set alarm limits are appropriate for the patient.
Admitting a patient using Get HIS

You can populate the Demographics page automatically, by pulling the demographic data of a patient from the network. Prerequisite for this network data transfer is the Infinity gateway with an interface to the hospital Admit, Discharge, Transfer (ADT) system. The Hospital Information System (HIS) searches the database for the demographic data of the patient by using the patient ID.

To admit a patient via Get HIS

- Touch the left most field on the header bar to access the Demographics page directly.
- or
- 1 Select Start/Standby... on the main menu bar.
- 2 Select the Demographics tab (if not already selected).
- 3 Enter the patient ID – use the symbol (C) next to the Patient ID field to activate an on-screen keyboard for entering the ID number (up to 13 alphanumeric characters).
- 4 Select the Get HIS button (E) in the Demographics page (see page 89). The Get HIS button appears grayed out and is not selectable when the HIS is not available or when the Cockpit is not connected to it.

Discharging a patient

You can discharge a patient from the Cockpit or from the M540. Discharging a patient from either device causes a discharge at the other device. Refer to the instructions for use Infinity Acute Care System – Infinity M540, for detailed information on how to discharge a patient from the M540.

Discharging a patient has the following effect on the Cockpit:
- All patient demographic data are removed from the screen
- All trend and event data are deleted
- Any active recordings are canceled
- The profile with defined patient settings is restored
- The message Touch Screen to initiate monitoring appears
Getting started

To discharge a patient

1. Select the left most field on the header bar of the Cockpit to access the Demographics page.
2. Select the Start tab (if not already selected).
3. Select the Discharge button.
 or

 NOTE
 If configured to appear on the main menu bar, the Discharge button is also accessible on the main menu bar. For more information, see page 398.

1. Select Start/Standby... on the main menu bar.
2. Select the Start tab (if not already selected).

3. Select the Start button. A pop-up window with the message **Caution discharge will delete patient data** appears.
4. Select the Discharge button in the pop-up window.

Discharging a patient may take some time during which the message **Please wait...** appears on the screen. Once the patient is discharged, the message **Patient transferred** appears in the Alarm history page.

Patient categories

Each patient category has specific profiles associated with it. Profiles are a set of patient and user settings that have been pre-configured by the factory or the hospital (for more information, see "Patient and default profiles" on page 66).

<table>
<thead>
<tr>
<th>Patient category</th>
<th>Typical Age Range</th>
<th>Weight</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>12 to 140 years</td>
<td>0.1 to 350.0 kg (0.1 to 772.0 lbs)</td>
<td>10 to 250 cm (5 to 100 in)</td>
</tr>
<tr>
<td>Pediatric</td>
<td>0 to 16 years</td>
<td>0.1 to 350.0 kg (0.1 to 772.0 lbs)</td>
<td>10 to 250 cm (5 to 100 in)</td>
</tr>
<tr>
<td>Neonate</td>
<td>0 to 2 years</td>
<td>1 to 10,000 g (0.1 oz to 351 oz)</td>
<td>10 to 250 cm (5 to 100 in)</td>
</tr>
</tbody>
</table>

If an M540 docks with a different patient category from the one selected on the Cockpit, the following happens:

- The Cockpit aligns its patient category to the M540 patient category setting.
- During the patient category alignment, the M540 continues to monitor the patient.
- The profile changes to the default profile for the new patient category and the message **Please wait...** is displayed.

As soon as the Cockpit has switched to the new patient category, the patient data are automatically transferred to the Cockpit from the M540 that has been monitoring the patient.

NOTE
If configured to appear on the main menu bar, the Discharge button is also accessible on the main menu bar. For more information, see page 398.
Selecting the patient category

If the **Patient profile selection** function is activated (see page 420), you can change the patient category and select a profile from a list of pre-configured profiles from the **Start** page. If the function is deactivated, you can only change the patient category from the **Demographics** page.

After changing the patient category, the new patient category label and symbol appear in the left most field of the header bar (see page 66).

A patient category change does not affect the following settings: the patient and physician names, patient ID, birth date, admit date, and height. The weight is affected by a change in patient category as follows:

- Changing from adult to pediatric patient category and vice versa does **not** affect the weight.
- Changing from adult or pediatric patient category to neonatal patient category causes the weight to appear blank.
- Changing from neonatal patient category to adult or pediatric causes the weight to appear blank.

To change the patient category from the **Start page**

The following steps are only possible when the **Patient profile selection** function is activated (see page 420).

1. Select the left most field on the header bar to access the **Demographics** page directly.
2. Select the **Start** tab (if not already selected).
3. Select the desired patient category button (**Adult**, **Pediatric**, or **Neonate**), next to the selection **Patient category**.
4. Press the rotary knob to confirm the setting.
5. Select a profile using the down arrow next to the selection **Profile**.

The Cockpit switches to the new patient category and the selected profile.

To change the patient category in the **Demographics page**

1. Select the left most field on the header bar to access the **Demographics** page directly.
 - or
2. Select **Start/Standby**... on the main menu bar.
3. Select the **Demographics** tab (if not already selected).
4. Select the desired patient category button (**Adult**, **Pediatric**, or **Neonate**), next to the selection **Patient category**.
5. Press the rotary knob to confirm the setting.

The Cockpit switches to the new patient category and the default profile for the new patient category.
Alarms

Overview of alarms

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm priorities</td>
<td>102</td>
</tr>
<tr>
<td>High-priority alarm conditions</td>
<td>102</td>
</tr>
<tr>
<td>Medium-priority alarm conditions</td>
<td>102</td>
</tr>
<tr>
<td>Low-priority alarm conditions</td>
<td>102</td>
</tr>
<tr>
<td>Alarm processing</td>
<td>102</td>
</tr>
<tr>
<td>Multiple alarm conditions</td>
<td>103</td>
</tr>
<tr>
<td>Activating or deactivating alarm validation</td>
<td>104</td>
</tr>
<tr>
<td>Visual alarm signals</td>
<td>105</td>
</tr>
<tr>
<td>Alarm bar</td>
<td>106</td>
</tr>
<tr>
<td>Acoustic alarm signals</td>
<td>109</td>
</tr>
<tr>
<td>Attention tones</td>
<td>109</td>
</tr>
<tr>
<td>Special conditions</td>
<td>110</td>
</tr>
<tr>
<td>Turning the alarm volume off</td>
<td>110</td>
</tr>
<tr>
<td>Testing visual and acoustic alarm signals</td>
<td>111</td>
</tr>
<tr>
<td>Viewing current alarm messages</td>
<td>111</td>
</tr>
<tr>
<td>Special alarm behavior</td>
<td>112</td>
</tr>
<tr>
<td>ASY/VF alarms</td>
<td>112</td>
</tr>
<tr>
<td>SpO2 desaturation alarms</td>
<td>112</td>
</tr>
<tr>
<td>NIBP/SpO2 interlock alarms</td>
<td>112</td>
</tr>
<tr>
<td>Zeroing invasive blood pressures</td>
<td>112</td>
</tr>
<tr>
<td>Privacy mode</td>
<td>113</td>
</tr>
<tr>
<td>Standby mode</td>
<td>114</td>
</tr>
<tr>
<td>Cardiac bypass mode</td>
<td>114</td>
</tr>
<tr>
<td>OR alarms</td>
<td>115</td>
</tr>
<tr>
<td>French NFC mode</td>
<td>115</td>
</tr>
<tr>
<td>Pre-silencing alarms</td>
<td>115</td>
</tr>
<tr>
<td>Central audio pause feature</td>
<td>115</td>
</tr>
<tr>
<td>Initiating a pre-silence period</td>
<td>116</td>
</tr>
<tr>
<td>Pausing acoustic alarm signals (audio pause)</td>
<td>116</td>
</tr>
<tr>
<td>Quiet mode</td>
<td>117</td>
</tr>
<tr>
<td>Pausing active alarms when no other alarms are paused</td>
<td>117</td>
</tr>
<tr>
<td>Pausing alarms when other alarms are already paused and Quiet mode is activated</td>
<td>118</td>
</tr>
<tr>
<td>When Quiet mode is deactivated</td>
<td>118</td>
</tr>
<tr>
<td>Low priority alarm conditions</td>
<td>119</td>
</tr>
<tr>
<td>Central audio pause feature</td>
<td>119</td>
</tr>
<tr>
<td>Activating or deactivating acoustic alarm signals</td>
<td>120</td>
</tr>
<tr>
<td>Pausing alarm monitoring temporarily</td>
<td>120</td>
</tr>
<tr>
<td>Activating or deactivating alarm monitoring</td>
<td>121</td>
</tr>
<tr>
<td>Configuring the alarm settings for a patient</td>
<td>122</td>
</tr>
<tr>
<td>Activating/deactivating alarms</td>
<td>122</td>
</tr>
<tr>
<td>Setting the upper and lower alarm limits</td>
<td>123</td>
</tr>
<tr>
<td>Configuring the alarm setup for an individual parameter</td>
<td>124</td>
</tr>
<tr>
<td>Configuring the alarm setup for multiple parameters</td>
<td>126</td>
</tr>
<tr>
<td>Configuring the setup of alarm messages</td>
<td>128</td>
</tr>
<tr>
<td>Configuring the arrhythmia alarm setup</td>
<td>131</td>
</tr>
<tr>
<td>Configuring ARR alarm settings</td>
<td>131</td>
</tr>
<tr>
<td>Alarm setup for ST</td>
<td>133</td>
</tr>
<tr>
<td>Configuring ST alarm settings</td>
<td>134</td>
</tr>
<tr>
<td>Auto setting all alarm limits</td>
<td>135</td>
</tr>
<tr>
<td>Alarm history and stored events</td>
<td>136</td>
</tr>
<tr>
<td>Viewing a snapshot of a single event</td>
<td>138</td>
</tr>
<tr>
<td>Viewing current alarms</td>
<td>139</td>
</tr>
<tr>
<td>Configuring alarm settings temporarily</td>
<td>139</td>
</tr>
<tr>
<td>Configuring the SpO2 alarm priority</td>
<td>141</td>
</tr>
<tr>
<td>Configuring the alarm priority for a Masimo sensor off message</td>
<td>141</td>
</tr>
<tr>
<td>Configuring the alarm priority for a Nellcor check sensor message</td>
<td>141</td>
</tr>
<tr>
<td>Remote alarm control</td>
<td>142</td>
</tr>
<tr>
<td>Alarm groups</td>
<td>142</td>
</tr>
<tr>
<td>Infinity MCable – Nurse call</td>
<td>142</td>
</tr>
<tr>
<td>External device disconnection alarm</td>
<td>143</td>
</tr>
<tr>
<td>The Code function</td>
<td>143</td>
</tr>
<tr>
<td>Alarm ranges and defaults</td>
<td>144</td>
</tr>
<tr>
<td>Arrhythmia ranges and defaults</td>
<td>150</td>
</tr>
</tbody>
</table>
Overview of alarms

The Cockpit and the M540 produce acoustic and visual alarm signals. These alarm signals alert you to alarm conditions ranging from limit violations, arrhythmia events, and network issues.

Persistent alarms generate acoustic and visual alarm signals that require user intervention. One-shot alarms are only reported once and do not require any user intervention.

Each alarm condition is assigned one of three alarm priorities: high (life-threatening), medium (serious), and low (advisory). Each alarm priority has unique acoustic and visual alarm signals.

In addition to the visual and acoustic alarm signals, alarm messages appear in the header bar of the Cockpit and in the alarm message field of the M540. For some parameters such as NIBP and SpO2, certain alarm messages are displayed in the parameter box of the Cockpit. All alarm conditions and associated alarm messages are described in detail in the "Problem solving" chapter starting on page 455.

The color of an alarm message corresponds to the priority of the associated alarm condition (see "Alarm priorities" on page 97).

The alarm settings for a patient can be set up to generate automatic recordings and/or store alarms for later event review in the alarm history. A physiological alarm can also activate an external alarm device such as a nurse call system. Special monitoring modes (see page 105), such as cardiac bypass mode, affect the regular alarming behavior.

When connected to the Infinity network, the Cockpit and the M540 can be configured to report alarm conditions occurring at other monitors that are also connected to the Infinity network.

For detailed instructions regarding the alarm functions of the M540, refer to the instructions for use Infinity Acute Care System – Infinity M540.

WARNING
The operator must remain within the hearing distance of the acoustic alarm to ensure quick detection and an appropriate response. The distance of the operator to the medical device must be appropriate for the volume of the alarm signal.
Alarms

Alarm priorities

Every alarm condition is assigned to one of three priorities: high (life-threatening), medium (serious), or low (advisory). Visual and acoustic alarm signals indicate the level of the alarm priority. For more information on how alarm priorities affect alarm reporting, see "Visual alarm signals" on page 100 and "Acoustic alarm signals" on page 102.

High-priority alarm conditions

All high-priority alarms are physiological alarm conditions that can be life-threatening and require immediate intervention.

An example of a high-priority alarm condition is an asystole.

Medium-priority alarm conditions

Most medium-priority alarms report physiological or technical alarm conditions that require prompt attention but may not be life-threatening.

An example of a medium-priority physiological alarm condition is a respiratory rate limit violation. An example of a medium-priority technical alarm condition is a hardware failure of an invasive blood pressure transducer.

Low-priority alarm conditions

All low-priority alarms alert you to technical issues that may compromise the ability of the system to monitor the patient.

An example of a low priority alarm condition is an artifact on the ECG waveform.

Alarm processing

When you dock an M540 on the M500 (see page 81), all visual and acoustic alarm signals are transferred to the Cockpit automatically. Acoustic alarm signals only sound at the Cockpit not at the M540 by default. If you also want alarms to sound at the M540 when it is docked, select the alarm tone volume at the M540 manually (refer to the instructions for use Infinity Acute Care System – Infinity M540).

The Cockpit provides acoustic and visual alarm signals for parameters originating from monitors in its alarm group (see page 132). In addition, the Cockpit reports technical alarms affecting the Infinity network.

NOTE

Alarm monitoring is not available for the following parameters: cardiac output (C.O.), injectate temperature (Tinj), pulmonary wedge pressure (PWP), paced beats (%PACED), perfusion index (PI) and SpOC for the Masimo rainbow SET MCable, any parameter displayed on the Cockpit using the device connectivity option.

When you undock the M540 from the M500 (see page 81), all alarm monitoring stops at the Cockpit but continues on the M540.
Latching and non-latching alarm behavior

When an alarm condition no longer exists, the associated acoustic and visual alarm signals behave in one of two ways:

- The alarm signals automatically stop when the alarm condition ceases to exist. This type of alarm is called a non-latching alarm condition.
- The alarm signals continue until you acknowledge the alarm even though the alarm condition has ceased to exist. This type of alarm is called a latching alarm condition.

In general, high-priority alarms are latching alarm conditions while low-priority alarm conditions are non-latching. Exceptions to this alarm behavior are listed on page 105.

The alarm priority of a latching alarm condition determines how the alarm signals behave after the alarm condition ceases to exist:

- A latched alarm condition of high priority is identified by the standard acoustic and visual alarm signals (see page 102 and page 100).
- A latched alarm condition of medium priority is downgraded to a status message which appears in the header bar. The background of the alarm message in the alarm header and the parameter box no longer flash in the alarm color. In addition, and there are no acoustic alarm signals.

To acknowledge a latched alarm condition

Press one of the following two keys:

- The yellow key or on the front panel of the Cockpit.
- The yellow key on the front panel of the M540.

or

- Select the All alarms off or All alarms paused button (the name and function of the button depends on the Cockpit configuration – see page 405). To access the button, press the quick access symbol next to the Alarms... button on the main menu bar.

The latched alarm signals clear and all acoustic and visual latched alarm signals disappear.

NOTE

When OR mode is activated (see page 406), high-priority alarms are no longer latching alarms. The alarm signals stop automatically when the alarm condition clears. Only when OR mode is deactivated do high-priority alarms conditions produce latching alarms.

Multiple alarm conditions

During multiple alarm conditions, the Cockpit and the M540 report the most recently detected alarm condition of highest priority. When several alarm conditions occur simultaneously, the parameter boxes flash for all alarming parameters. The alarm condition with the highest priority determines which acoustic alarm signal is generated, how the alarm bar and the parameter box appear, and what alarm message appears in the header bar. If more than two alarms are active simultaneously, the corresponding messages appear in the header bar along with the More... button which provides access to additional messages. For more details, see "Communicating with the Infinity network" on page 40.
Activating or deactivating alarm validation

When the alarm validation function is activated (see page 391), an alarm condition must exist for a certain time before acoustic and visual alarm signals are triggered. This feature reduces nuisance alarms.

When the alarm validation feature is activated, the time between the detection and annunciation of a parameter falling outside the set alarm limits equals the time of detection plus the assigned alarm validation delay. For HR, adding the delay time may exceed the maximum of 10 seconds allowed by AAMI EC13 and IEC 60601-2-27.

The following table lists which parameters have an alarm validation time. Parameters that do not appear in the table have no validation times and acoustic and visual alarm signals are triggered almost immediately.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper alarm limit</th>
<th>Lower alarm limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG/Heart rate (HR)</td>
<td>6 s</td>
<td>6 s</td>
</tr>
<tr>
<td>Pulse rate (PLS)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
<tr>
<td>ST segment analysis (ST)</td>
<td>15 s to 60 s</td>
<td>60 s</td>
</tr>
<tr>
<td></td>
<td>(selectable) 1)</td>
<td></td>
</tr>
<tr>
<td>Respiratory rate (RRI)</td>
<td>14 s</td>
<td>14 s</td>
</tr>
<tr>
<td>Respiratory rate (RRc)</td>
<td>8 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Pulse oximetry (SpO2) 2)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Invasive blood pressure (IBP)</td>
<td>10 s</td>
<td>4 s</td>
</tr>
<tr>
<td>Total hemoglobin (SpHb and SpHbv)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Carboxyhemoglobin saturation (SpCO)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Pleth variability index (PVI)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Methemoglobin saturation (SpMet)</td>
<td>6 s</td>
<td>10 s</td>
</tr>
</tbody>
</table>

NOTE

1) Select the validation period for the ST limit alarm in the ST dialog window (see "Configuring ST alarm settings" on page 125).

2) For Nellcor OxiMax SpO2: the SatSeconds alarm time overrides the alarm validation setting (see "SatSeconds alarm" on page 259).
Alarms

Visual alarm signals

Each alarm priority has its own distinct visual alarm signals. When the M540 is docked on the M500, only the Cockpit provides acoustic alarm signals. However, visual alarm signals appear on the Cockpit and the M540.

The alarm message in the header bar is the only visual alarm signal if an alarming parameter is not included in the current screen view or the alarm bar is deactivated.

<table>
<thead>
<tr>
<th>Alarm priority</th>
<th>Parameter box</th>
<th>Alarm message field 1) in header bar</th>
<th>Alarm bar (if activated, see page 406)</th>
<th>Alarm banner in header bar (refer to "Banners" on page 458)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (life-threatening)</td>
<td>Flashing red background</td>
<td>Red background</td>
<td>Flashing red</td>
<td>White alarm text on red background</td>
</tr>
<tr>
<td>(for example, asystole, ventricular fibrillation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium (serious)</td>
<td>Flashing yellow background</td>
<td>Yellow background</td>
<td>Flashing yellow</td>
<td>Black alarm text on yellow background</td>
</tr>
<tr>
<td>(for example, alarm limit violations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (advisory)</td>
<td>Solid cyan background</td>
<td>Cyan background</td>
<td>No visual signal</td>
<td>Black alarm text on cyan background</td>
</tr>
<tr>
<td>(for example, disconnected electrode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
1) Cockpit alarm messages are designed to be legible from a distance of 1 meter (3.3 feet) to 2 meters (6.6 feet). M540 alarm messages are legible at arm’s length.
Alarms

Visual alarm indicators on the Cockpit

A. Alarm message field in the blue header bar
B. Alarming parameter box
C. Alarm bar

Visual alarm indicators on the M540

Alarm bar

The alarm bar on the Cockpit and the M540 visually announce high and medium-priority alarm conditions (see page 97). The color of the alarm bar always reflects the priority of the alarm condition. It may change from yellow to red and vice versa depending on the latest alarm condition. The alarm bar appears in solid color for any unacknowledged single notification alarm.

However, the alarm bar is inactive when:
- Only low-priority alarm conditions exist
- The alarm bar is deactivated (see page 406)
- Cardiac bypass or Privacy modes are activated (see page 107)
- Alarm monitoring is deactivated (see page 113)

NOTE

The color of the alarm bar always corresponds to the highest priority alarm condition for all active or audio pause alarms.

Header bar

The header bar displays the alarm message on the background color corresponding to the alarm priority. During multiple alarm conditions, the visual alarm signals always reflect the condition corresponding to the highest alarm priority. The header bar accommodates up to two messages simultaneously (see page 98).
Acoustic alarm signals

During an alarm, the Cockpit also provides distinct acoustic alarm signals for each alarm priority in addition to visual alarm signals (see page 100). The specific characteristics of these acoustic alarm signals depend on the selected alarm tone pattern. The available alarm tone patterns are: *Infinity*, *IEC fast*, and *IEC slow*.

When acoustic alarm signals are paused, the alarm bar and the parameter box stop flashing but remain lit up in the respective alarm color.

If multiple alarm conditions exist simultaneously, an acoustic alarm signal sounds for the alarm condition with the highest priority.

<table>
<thead>
<tr>
<th>Alarm priority</th>
<th>IEC fast</th>
<th>IEC slow</th>
<th>Infinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Three beeps > one beep > one beep with higher pitch > short pause</td>
<td>Three beeps > one beep > one beep with higher pitch > short pause</td>
<td>Continuous two-tone sequence</td>
</tr>
<tr>
<td>Medium</td>
<td>Two beeps > one lower pitched beep</td>
<td>The following tone sequence is repeated every 15 s: Two beeps > one lower pitched beep</td>
<td>Two tones > short pause</td>
</tr>
<tr>
<td>Low</td>
<td>Two beeps repeated every 16 s</td>
<td>Two beeps repeated every 30 s</td>
<td>Low tone repeated every 30 s</td>
</tr>
</tbody>
</table>

NOTE

Normally, acoustic alarm signals only sound at the Cockpit not at the M540. Therefore, all acoustic alarm signals are transferred automatically from the M540 to the Cockpit once you dock the M540. However, if you want alarms to sound at both devices, select the alarm tone volume at the M540 manually.
Alarms

Attention tones

The Cockpit also provides an attention tone to alert you to special information such as:
- Start of venous stasis
- End of zeroing a transducer
- Arrival of lab data

An attention tone sounds once as a chime (that is, two tones in the same pitch). To set the attention tone volume, refer to page 130.

NOTE
Unlike attention tones, pulse tones for ECG or SpO2 consist of a single tone.

Adjusting the alarm volume

The volume of the alarm tone is adjustable. Make sure you set the alarm volume so that it is suitable for the clinical environment.

The alarm status indicating the alarm volume displays in the Cockpit alarm message header. In the following example the alarm volume is set at 50% which is indicated by the percentage.

To adjust the alarm tone volume

1. Select the Alarms... button on the main menu bar.
2. Select the Settings tab.
3. Select the button Alarm volume [%] and select the desired volume (5%, 10 to 100% in increments of 10%).

Special conditions affecting the alarm volume

There are several conditions that affect the alarm volume of the Cockpit.

Minimum alarm volume setting

The alarm volume is tied to the setting Minimum alarm volume (see page 407 for more information). If the minimum alarm volume is set to a higher volume than the selected alarm volume, the alarm volume is adjusted to the higher setting. If the minimum alarm setting is set to a lower setting than the current alarm volume, the alarm volume does not change.

NOTE
If the Alarm volume off feature is enabled in the Code setup page (see page 410), the alarm volume is automatically reduced to its minimum alarm volume setting when you select the Code button on the main menu bar.

Cockpit and ICS lose connection

If the Cockpit was assigned to the ICS and it loses its connection to the ICS, you can no longer turn the alarm volume off at the Cockpit. In this case, the alarm tone setting goes automatically to 100%. Once the Cockpit restores its connection to the ICS, the previous setting for the alarm volume is reinstated.

However, if the connection to the ICS is lost while the Cockpit is in OR mode and the Minimum alarm volume setting is set to Off, you can still turn the alarm volume off at the Cockpit.

For more information about the network communication, see page 40.
Alarms

Deactivating the alarm volume

You can only deactivate the alarm volume under the following two circumstances:

– If the patient is assigned to an ICS and the setting Minimum alarm volume is set to Off.
– If the Cockpit is in OR mode and the setting Minimum alarm volume setting is set to Off.

These two system settings are configured under the password-protected Volume/Tone page (see page 407).

To deactivate the alarm volume

Make sure the Minimum alarm volume is set to Off (see page 407), before you execute the following steps:

1. Select the Alarms... button on the main menu bar.
2. Select the Settings tab.
3. Select Off under the Alarm volume [%] setting.

The banner Audio off and the corresponding symbol displays in the alarm message header.

The alarm history records a message when the alarm volume is set to Off, and the alarm volume changes from Off to another setting.

Testing visual and acoustic alarm signals

The alarm bar and the speakers of the M540 and the Cockpit are automatically tested during startup. You can also test the visual and acoustic alarm signals by creating an alarm condition (for example, by lowering the upper alarm limit of the heart rate). To end the test, restore the alarm limits to the previous setting (see "Configuring the alarm settings for a patient" on page 113).

Viewing current alarm messages

The Cockpit identifies each alarm condition according to the alarm priorities low, medium, and high (see page 97). In addition to visual and acoustic alarm signals, alarm messages in the header bar identify each alarm condition. The header bar can display two messages simultaneously. If more than two patient alarm conditions are active simultaneously, the button More... appears to the left of the alarm message field (see page 77). Selecting this button activates the Current alarms page. This page lists all of the currently active alarms.

Specifically, you can review the following information for each alarm condition:

– How long the alarm has been active (duration).
– The alarm priority of the alarm condition (! = low-priority; !! = medium-priority; !!! = high-priority).
– Alarm message (for detailed information on the cause and possible remedies, see the chapter "Problem solving" on page 455).
To access the current alarm messages

- Select the More... button to the left of the alarm message field in the header bar (only visible when more than two patient alarm conditions are active).

or

1 Select the Alarms... button on the main menu bar.
2 Select the Current alarms tab.

Special alarm behavior

Activating any of the following features alters the normal alarm annunciation behavior:
- ASY/VF alarms
- SpO2 desaturation alarm
- NIBP/SpO2 interlock function
- Zeroing invasive blood pressures
- Privacy, Standby, Cardiac bypass, and OR modes
- French NFC mode

ASY/VF alarms

You can control the alarming behavior for ventricular fibrillation (VF) and asystole (ASY) alarms.

WARNING
Alarm signals are not generated for ventricular fibrillation and asystole events when the following conditions are met:
- The ASY/VF alarms setting is set to Always on or Follow HR alarm (see page 404).
- The ARR mode is set to Off.
- The HR source is set to ART or SpO2 with ECG available as a heart rate source.

To make sure that asystole and ventricular fibrillation alarms are always reported do one of the following:
- Turn arrhythmia monitoring on

or

- Set the HR source to ECG (see page 194) when the ARR mode setting is set to Off (see page 206)

If you select Follow HR alarm, deactivate HR and arrhythmia alarm monitoring, the banner ☢️ HR, ASY, VF off appears.

SpO2 desaturation alarms

In neonatal mode, the alarm priority is upgraded to high-priority if the SpO2 value falls more than 10% below the lower SpO2 alarm limit. This feature is automatically activated whenever neonatal mode is activated. This function can be activated or deactivated (see page 259 or page 245). When using the Infinity MCable – Nellcor OxiMax, this feature is only available if the SatSeconds alarm function is set to Off (see page 259).

NIBP/SpO2 interlock alarms

To avoid SpO2 nuisance alarms when the non-invasive blood pressure cuff and the SpO2 sensor are placed on the same limb during an active non-invasive blood pressure measurement, select the NIBP/SpO2 interlock function in the General settings page (see page 404).

When the function is activated, all SpO2 alarms are deactivated during an active non-invasive blood pressure measurement. To activate or deactivate this function, see page 406.
Zeroing invasive blood pressures

Zeroing all invasive blood pressures from the Zero all button on the Cockpit menu bar or from the +0+ key on the hemodynamic pods (see page 292) has the following effects:

- All invasive blood pressure and CPP limit alarms and static alarms are suppressed from the time the button/key is pressed until 30 seconds after the zeroing procedure is completed. This includes an alarm for a disconnected arterial catheter.

Zeroing an individual blood pressure from a specific invasive blood pressure page on the Cockpit (see page 291) has the following effects:

- The invasive blood pressure limit alarm for that parameter is suppressed from the time the button is pressed until 30 seconds after the zeroing procedure is completed.
- If the zeroed parameter is ICP or ART, the CPP limit alarm is also suppressed from the time the button is pressed until 30 seconds after the zeroing procedure is completed.

The following alarm conditions cancel the suppression of alarms caused by zeroing invasive blood pressures:

- The invasive blood pressure parameter is outside (high/low) the measuring range.
- Invasive blood pressure hardware failures such as a transducer failure
- Unplugged transducers
- Disconnected hemodynamic pods
- A wedge pressure measurement that ends before the 30-second zeroing period ends will activate the alarm limit for the parameter PA M only

Privacy mode

When privacy mode is activated, the following happens at the Cockpit:

- All patient data are removed from the Cockpit and the M540 but continue to be visible at the ICS (Infinity CentralStation).
- The Cockpit and at the M540 display the alarm message Privacy Touch Screen to resume monitoring.
- The alarm bar is deactivated.
- Acoustic alarm signals are only provided at the ICS.
- Home is the only active button on the main menu bar of the Cockpit; all other buttons are inactive.

You can activate privacy mode only if the patient is also admitted at the ICS. To activate or deactivate this feature, see page 78.

Standby mode

When Standby mode is activated, the following happens at the Cockpit:

- All patient data are removed from the screen.
- All monitoring (including acoustic and visual alarm signals) is suppressed.
- Active alarms are considered acknowledged by the user.
- The message Touch Screen to resume monitoring appears at the ICS, at the Cockpit, and at the M540.
- Home is the only active button on the main menu bar of the Cockpit; all other buttons are inactive.
- All recordings are canceled.

To activate or deactivate this function, see page 77.
Alarms

Cardiac bypass mode

Cardiac bypass mode is only available when the Cockpit is in OR mode. When cardiac bypass mode is activated (see page 406), the following happens at the Cockpit:

- All alarm monitoring (including arrhythmia alarms), and the alarm bar are deactivated.
- Alarm reminders are not activated.
- The message **Bypass All alarms off** and the symbol 📣 appear in the banner area in the upper-right corner of the header (in white text on red background). This message also displays at the ICS and on a remote device.
- Pressing the **All alarms paused** or the **All alarms off %0** button deactivates cardiac bypass mode.
- Pressing the yellow fixed key on the Cockpit does not pause any alarms.
- The non-invasive blood pressure interval mode is deactivated. The interval timer is restored to the last value. To restart the interval measurements, press the **NIBP start/stop** button or the start/stop fixed key.
- The alarm history records either the message **Cardiac bypass on** or **Cardiac bypass off**.

When the Cockpit is in cardiac bypass mode and the M540 is undocked, cardiac bypass mode is not supported on the M540. Cardiac bypass is activated on the M540 after it docks to a Cockpit that is in cardiac bypass mode.

To activate or deactivate this function, see page 406. If **French NFC mode** is activated, Cardiac bypass mode is not available.

OR alarms

When OR alarms are activated, alarm messages for medium and high-priority alarms clear when the alarm condition no longer exists. In addition, you can deactivate the acoustic alarm signal. For detailed information, see page 102.

French NFC mode

When this mode is activated, the following happens at the Cockpit:

- Heart rate alarms cannot be deactivated.
- The alarm pause period cannot last longer than 3 minutes.
- You cannot activate Cardiac bypass mode when **French NFC mode** is activated. If Cardiac bypass mode was activated before **French NFC mode** was activated, Cardiac bypass mode is deactivated.

To activate or deactivate this function, see page 419.
Pre-silencing alarms

This function allows you to pre-silence (audio pause in advance) potential alarm conditions before they occur. Pre-silencing allows you to concentrate on a procedure without being interrupted by continuous acoustic alarm signals arising from potential alarm conditions.

NOTE
Pre-silencing alarms is not possible when quiet mode is deactivated.

A pre-silence period lasts two minutes.

Pre-silencing alarms has the following effect:

- Any alarm conditions are reported visually by a corresponding alarm message and a blinking parameter box (see page 100).
- The alarm message **Audio paused** appears in the far right field of the header bar along with a countdown timer and the following symbol: 🕒.
- A single alarm tone sequence is generated for the first occurrence of an alarm condition of low, medium or high alarm priority. For subsequent alarm conditions of equal alarm priority, no further acoustic alarm signals are generated. Only for subsequent alarm conditions of higher alarm priority, a single alarm tone sequence is generated.
- If multiple alarm conditions arise during an active pre-silence period, the Cockpit triggers a single alarm tone sequence for the alarm condition corresponding to the highest priority. The Cockpit remains silent for any subsequent alarm conditions of equal or lower alarm priority.

Initiating a pre-silence period

You can initiate a pre-silence in several ways:

- From the Cockpit
- From an M540 on wireless transport
- From an ICS
- From the remote view of another Infinity monitor within the same monitoring unit

To pre-silence alarms remotely is only possible if the remote control feature of the remote device is activated and quiet mode is enabled on the Cockpit (see “Alarm setup – Code functions” on page 410). Refer to the corresponding instructions for use for information on how to activate the remote control feature.

To pre-silence alarms from the Cockpit

- Press the yellow 🌈 key or ⚫ key on the Cockpit. The appearance of the yellow key depends on the Cockpit hardware version (see page 22).
- Press the F1 keyboard key.

Pressing the key that initiated the pre-silence period again, cancels the pre-silence state and all alarm events are reported as usual.
To pre-silence alarms remotely

- Press the yellow key on the main menu bar of the ICS to pre-silence alarms for all assigned patients. Press the same button in the viewport area to pause alarm tones for an individual patient. For more information, refer to the ICS instructions for use.

- Press the yellow key on the M540 when it is not docked in an IACS configuration.

- Refer to the instructions for use of other remote devices within the same monitoring unit for detailed instructions on how to initiate an audio-pause remotely. Pressing the key that initiated the pre-silence period again, cancels the pre-silence state and all alarm events are reported as usual.

Pausing acoustic alarm signals (audio pause)

Acoustic alarms can be paused, or silenced, at the Cockpit for two minutes. In addition to silencing alarms, the setting of the quiet mode feature determines how subsequent alarm conditions are announced.

You can initiate an audio pause from the Cockpit, the M540, the ICS, or from the remote view of another Infinity monitor within the same monitoring unit. Pausing alarms from a remote device is possible when remote control is activated at the remote device and the Cockpit (see page 417).

Quiet mode

This feature gives you the flexibility to decide if you want restricted or full annunciation of future alarm conditions after you have already paused alarms. This feature affects the audio pause behavior of the IACS and the ICS. To activate or deactivate the quiet mode feature, refer to “Alarm setup – configuring the alarm volume and tones” on page 407.

Activated quiet mode

If a new alarm condition with a priority higher than the currently paused alarm occurs, a truncated alarm tone sounds. In addition, the alarm is represented by visual alarm signals corresponding to the alarm priority. If the new alarm is of lower priority than the paused alarm, the new alarm condition is only represented by a visual alarm signal. No acoustic alarm tones sound.

If the patient is also admitted at the ICS, any high priority alarm condition will sound at the ICS. For any subsequent alarm condition of equal or lesser priority, no further alarm tones sound.

Deactivated quiet mode

Any new alarm condition breaks through the audio pause period with full acoustic and visual alarm annunciation. The same is true if the patient is admitted at the ICS.
Initiating an audio pause

The following happens when you pause active alarms:

- The alarm tone is paused for two minutes
- The **Audio paused** banner appears in the alarm message header along with the countdown timer and the following symbol: ☐
- The alarm message appears in the color corresponding to the alarm priority.
- The parameter box no longer flashes in the color corresponding to the alarm priority. It appears in solid color.
- The alarm bar no longer flashes for high and medium priority alarm conditions.

If a new alarm condition occurs, the selected setting of the quiet mode feature determines the alarm annunciation behavior (see page 109).

NOTE

If an alarm condition remains unchanged after the alarm pause period expires, the acoustic and visual alarm signals are reactivated. The only exception are single notification alarms which are only reported once and are cleared when you pause alarms.

To initiate an audio pause from the Cockpit

- Press the yellow ☐ or ☐ key on the Cockpit. The appearance of the yellow key depends on the Cockpit hardware version (see page 22).

 or

- Press the F1 keyboard key.

 Pressing the key that initiated the audio pause period again, cancels the audio pause state, and all alarm events are reported as usual.

To initiate an audio pause from the M540

Press the yellow ☐ key on the M540 in an IACS configuration. You can audio pause alarms on the M540 when it is docked or while it is on transport.

To initiate an audio pause remotely

Refer to the instructions for use of any remote device within the same monitoring unit for instructions on how to initiate an audio pause.

Pressing the key that initiated the audio pause period again, cancels the audio pause state, and all alarm events are reported as usual.
Activating or deactivating acoustic alarm signals

Deactivating acoustic alarm signals is a password-protected function (see page 404).
You can deactivate alarm tones permanently. When you deactivate alarm tones, the following happens:
- Alarm tones no longer announce alarm conditions.
- The message *Audio off* appears in the far right field of the header bar and the following symbol:

After deactivating acoustic alarm signals permanently, you can activate them again (see page 404).
When you activate acoustic alarm signals, the following happens when an alarm condition occurs:
- Acoustic alarm signals sound (see page 102).
- Alarm messages appear in the header bar (see page 100).
For information about configuring alarm volumes and the *Audio off reminder* feature, refer to "Alarm setup – configuring the alarm volume and tones" on page 407.

Pausing alarm monitoring temporarily

If the password-protected alarm pause feature is activated (see page 405), you can pause alarm monitoring temporarily. The alarm pause duration is adjustable from 1 minute to 5 minutes (default is 2 minutes).

The following happens when you pause alarm monitoring:
- Acoustic and visual alarm signals for new alarm conditions are suppressed for all parameters until alarm monitoring begins again.
- Alarm signals for any active alarm condition stop immediately.
- The alarming parameter box and alarm bar return to the pre-alarm state.
- Alarm messages are removed from the alarm message field in the header bar.
- The far right field of the header bar turns yellow and displays the alarm message *All alarms paused*, a countdown timer, and the following symbol:
- The message *All alarms paused* is recorded in the alarm history (see page 127).

NOTE
If the *French NFC mode* is activated (see page 419), you cannot pause alarm monitoring for more than 3 minutes.

NOTE
If the Cockpit is connected to the network and the patient is admitted at the ICS, a message also appears at the ICS that alarms are paused.
To pause alarm monitoring temporarily

1. Select the symbol next to the Alarms... button on the main menu bar of the Cockpit.
2. Select the All alarms paused button.

NOTE
If configured to appear on the main menu bar, the All alarms paused button is also accessible on the main menu bar. For more information, see page 398.

As soon as the alarm pause period ends, the Cockpit generates acoustic and visual alarm signals as needed.

To activate alarm monitoring after pausing

1. Select the symbol next to the Alarms... button on the main menu bar of the Cockpit.
2. Select the All alarms paused button again.

NOTE
If configured to appear on the main menu bar, the All alarms paused button is also accessible on the main menu bar. For more information, see page 398.

Activating or deactivating alarm monitoring

WARNING
If No timeout is assigned to the alarm off period, no counter appears and alarms remain deactivated until you enable them again.

WARNING
Never leave a patient unattended when alarm monitoring is permanently deactivated. Always activate alarm monitoring again as soon as possible.

If the password-protected alarm pause feature is set to No timeout (see page 405), the following happens when you deactivate alarm monitoring:

- All acoustic and visual alarm signals for new alarm conditions are suppressed for all parameters until alarm monitoring is manually activated again.
- Acoustic alarm signals for any active alarm condition stop immediately.
- The alarming parameter box and alarm bar return to the pre-alarm state.
- Alarm messages are removed from the alarm message field of the header bar.
- The far right field of the header bar turns yellow and displays the message All alarms off %0 and the following symbol: ⚠️.
- The message All alarms off is recorded in the alarm history (see page 128).

NOTE
If the Cockpit is connected to the network, a message also appears at the ICS that all alarms are turned off.
Alarms

To deactivate alarm monitoring permanently

1 Select the symbol next to the Alarms... button on the main menu bar of the Cockpit.

2 Select the All alarms off button on the toolbar.

To activate alarm monitoring after deactivating

1 Select the symbol next to the Alarms... button on the main menu bar of the Cockpit.

2 Select the All alarms off button again on the toolbar.

The Cockpit provides acoustic and visual alarm signals again when it detects a new alarm condition.

Configuring the alarm settings for a patient

The following section describes the available alarm features and settings. You can adjust the alarm settings for an individual parameter in the respective parameter-specific setup page. Or, you can set up the alarm settings of multiple parameters in one page. When setting alarm limits, make sure that they are appropriate for the patient’s condition.

Activating/deactivating alarms

Except for the following parameters, you can activate or deactivate the alarm function for individual parameters:

- Asystole and ventricular fibrillation (for these arrhythmia events you cannot deactivate alarms unless the ASY/VF alarms feature is set to Follow HR alarm)
- Cardiac output (C.O.)
- Injectate temperature (Tinj)
- Pulmonary wedge pressure (PWP)
- Paced beats (%PACED)
- Perfusion index (PI)
- Total oxygen content (SpOC) for the Masimo rainbow SET MCable
- Parameters originating from a device that is displaying its values on the Cockpit using the device connectivity option.

NOTE
If configured to appear on the main menu bar, the All alarms off button is also accessible on the main menu bar. For more information, see page 398.
Alarms

When you deactivate alarms, no acoustic and visual alarm signals are triggered for that parameter. When alarm monitoring is deactivated, a crossed out triangle (A) appears in the parameter box.

When you activate the alarm function for a parameter, the set alarm limits replace the crossed out triangle, provided the alarm limits display is activated (see page 404).

Setting the upper and lower alarm limits

You can configure the upper and lower alarm limits of a parameter manually to trigger acoustic and visual alarm signals if a parameter goes above or below the set limits. You can also auto set the alarm limits of all parameters quickly based on a percentage. For more information on the Auto set function, see page 127.

WARNING
Setting alarm limits to extreme values may prevent certain alarm conditions from being detected and from being annunciated with acoustic and visual alarm signals.

For information regarding special SpO2 alarm limit behavior, refer to the chapters SpO2 and Pulse CO-Ox monitoring with Masimo SET MCable on page 240, and SpO2 and pulse rate with Nellcor OxiMax MCable on page 257.

Archive function

Depending on the active archive setting, the following happens in response to an alarm limit violation:

- An automatic strip recording (see chapter "Reports/recordings").
- An electronic event storage in the alarm history for later review (see page 127). For information on configuring the archive function, see "Changing general alarm settings" on page 118.
Configuring the alarm setup for an individual parameter

If you are only changing the alarm settings of an individual parameter, use the parameter-specific setup page which includes the alarm setup.

The following diagram shows an example of a parameter-specific setup page. Regardless of the parameter, buttons for adjusting the alarm settings always appear at the top. The alarm setup portion looks different depending on the parameter.

For example, the following diagram shows a setup page for a composite parameter such as non-invasive blood pressure. There are separate alarm settings for each composite parameter (systolic, diastolic, and mean).

A Alarm on/off buttons for each parameter
B Auto set button
C Buttons setting the upper limits for each parameter
D Buttons setting the lower limits for each parameter
E Archive buttons
F Parameter-specific monitoring settings
Changing alarm settings for a single parameter

In the steps below, the letters in parentheses refer to the diagram of the parameter-specific setup page.

WARNING
Setting alarm limits to extreme values may prevent certain alarm conditions from being detected and from being annunciated with acoustic and visual alarm signals.

NOTE
If French NFC mode is activated (see page 419), you cannot deactivate HR alarms.

To configure the alarm settings

1. Select **Sensor parameters**... on the main menu bar.
2. Select the desired parameter tab (for example, **ECG**).
 or
3. Select the **Alarm on/off** button (A), to activate or deactivate alarm monitoring. A crossed-out triangle appears in the parameter box when alarm monitoring is deactivated.
4. Select the setup button (C) to adjust the upper alarm limits.
5. Select the setup button (D) to adjust the lower alarm limits.
6. Select one of the following settings for the **Archive** buttons (E) to determine what happens in response to an alarm:
 - **Off** – no event is stored and no recording is generated.
 - **Store** – stores the event for later review (see page 128).
 - **Record** – generates a timed recording.
 - **Str/Rec** – stores an event for later review and generates a timed recording.
Configuring the alarm setup for multiple parameters

The following diagram shows the General page where you configure alarm settings for all available parameters. The page consists of a table with setup rows for each parameter. Each setup row consists of several fields for configuring the individual alarm settings. When you select a field to configure a setting, an orange border highlights the selected row.

- A **Limits** tab
- B Parameter labels column
- C **Alarm** on/off column
- D **Lower** limits column
- E Actual parameter values
- F **Upper** limits column
- G **Archive** column
- H **General, A****RR**, and **ST** tabs
- I Display filter button
- J **Auto set all** button (see "Auto setting all alarm limits" on page 126)
Changing general alarm settings

In the following steps, the letters in parentheses refer to the diagram of the General page (see page 117). Alarm ranges and defaults are listed starting on page 141.

1. Select the Alarms... button on the main menu bar.
2. Select the Limits tab (if not already selected).
3. Select the General tab along the right edge of the page.
4. Use the display filter button (I) to determine whether the table displays all parameters or only parameters that are currently connected.
5. Select the corresponding button in the Alarm on/off column (C) to activate or deactivate alarm monitoring. A crossed-out triangle appears in the parameter box when alarm monitoring is deactivated.
6. Select the corresponding button in the Lower column (D) to adjust the lower alarm limits.
7. Select the corresponding button in the Upper column (F) to adjust the upper alarm limits.
8. Use one of the following settings in the Archive column (G) to determine what happens in response to an alarm:
 - Off – no event is stored and no recording is generated.
 - Store – stores the event for later review (see page 128).
 - Record – generates a timed recording
 - Str/Rec – generates a timed recording and stores the event.
9. Select the Auto set all button (J), to auto adjust the alarm limits of all parameters. For more information, see page 127.

WARNING
Setting alarm limits to extreme values may prevent certain alarm conditions from being detected and from being annunciated with acoustic and visual alarm signals.

NOTE
If configured to appear on the main menu bar, the Auto set all button is also accessible on the main menu bar. For more information, see page 398.
Configuring the alarm message behavior

The Config. tab allows you to set up the acoustic and visual alarm reporting behavior in response to certain SpO2 sensor and messages related to leads-off conditions.

To access the Config. tab

1. Select the Alarms... button on the main menu bar.
2. Select the Limits tab (if not already selected).
3. Select the Config. tab.
4. Refer to the following table for available settings. The selected alarm priority affects how the alarm event is reported visually and acoustically (see page 100 and page 102).

<table>
<thead>
<tr>
<th>Message</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2 sensor off</td>
<td>Alarm settings</td>
<td>Assigns an alarm priority to the sensor alarm or deactivates the sensor alarm.</td>
</tr>
<tr>
<td></td>
<td>– High</td>
<td>– High: The event is treated as a high priority alarm.</td>
</tr>
<tr>
<td></td>
<td>– Medium</td>
<td>– Medium: The event is treated as a medium priority alarm.</td>
</tr>
<tr>
<td></td>
<td>– Low (default for SpO2 check sensor)</td>
<td>– Low: The event is treated as a persistent low priority alarm.</td>
</tr>
<tr>
<td></td>
<td>– One-shot</td>
<td>– One-shot: The event is treated as a low priority, single notification alarm.</td>
</tr>
<tr>
<td></td>
<td>– : (off)</td>
<td>– : No visual or acoustic alarm signals are triggered; however, if the sensor is no longer attached to the patient, a corresponding message appears in the SpO2 parameter box.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SpO2 check sensor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarm settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Low (default for SpO2 check sensor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– One-shot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– : (off)</td>
<td></td>
</tr>
</tbody>
</table>

Regardless of the selected setting, the acoustic alarm signal can be audio paused but resumes if the condition persists beyond the two minute audio pause time. The message appears in the header bar of the Cockpit until the condition disappears or you acknowledge.

1) Message originating from a Masimo rainbow SET or a Masimo SET MCable.
2) Message originating from a Nellcor MCable.
Alarms

<table>
<thead>
<tr>
<th>Message</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2 sensor off</td>
<td>- Off (default)</td>
<td>The archive settings cannot be configured for these two alarm messages. The archive setting follows the general archive status for the parameter. For details on how to change the archive settings of a parameter, refer to page 115.</td>
</tr>
<tr>
<td>SpO2 check sensor</td>
<td>- Store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Str/Rec</td>
<td></td>
</tr>
<tr>
<td>ECG leads off</td>
<td></td>
<td>Determines what happens when the corresponding alarm occurs: - generates a timed recording and stores the event.</td>
</tr>
<tr>
<td></td>
<td>Alarm column</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- High</td>
<td>- High: The event is treated as a latching alarm.</td>
</tr>
<tr>
<td></td>
<td>- Medium</td>
<td>- Medium: The event is treated as a medium priority alarm.</td>
</tr>
<tr>
<td></td>
<td>- Low (default)</td>
<td>- Low: The event is treated as a persistent low priority alarm.</td>
</tr>
<tr>
<td></td>
<td>- One-shot</td>
<td>- One-shot: The event is treated as a single notification alarm of low priority. The message ECG leads off appears briefly in the header bar until the user acknowledges the condition or the condition disappears.</td>
</tr>
<tr>
<td></td>
<td>- ![] (off)</td>
<td>- ![]: No visual or acoustic alarm signals are triggered.</td>
</tr>
<tr>
<td>Archive settings</td>
<td>- Off (default)</td>
<td>These archive settings cannot be configured for this alarm message. The archive setting follows the general archive setting for the parameter. For details on how to change the archive settings of a parameter, refer to page 115.</td>
</tr>
<tr>
<td></td>
<td>- Store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Str/Rec</td>
<td></td>
</tr>
</tbody>
</table>

1) Message originating from a Masimo rainbow SET or a Masimo SET MCable.
Alarms

<table>
<thead>
<tr>
<th>Message</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRI lead off</td>
<td>Alarm settings</td>
<td></td>
</tr>
<tr>
<td>- High</td>
<td></td>
<td>Assigns an alarm priority to the RRI lead-off alarm or deactivates it.</td>
</tr>
<tr>
<td>- Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low (default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- One-shot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- (off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High: The event is treated as a high priority alarm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Medium: The event is treated as a medium priority alarm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low: The event is treated as a persistent low alarm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- One-shot: The event is treated as a low priority, single notification. The message RRI lead off appears briefly in the header bar until the user acknowledges the condition or the condition disappears.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- : No visual or acoustic alarm signals are triggered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Archive settings		
- **Off** (default)		These archive settings cannot be configured for this alarm message. The archive setting follows the general archive status for the parameter. For details on how to change the archive settings of a parameter, refer to page 115.
- **Store**		
- **Record**		
- **Str/Rec**		

<table>
<thead>
<tr>
<th>ART catheter disconnected</th>
<th>Alarm settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm column</td>
<td></td>
<td>Assigns an alarm priority to the ART catheter disconnected alarm or deactivates it. The selected alarm priority affects how the alarm event is reported visually and acoustically (see page 100 and page 102.</td>
</tr>
<tr>
<td>- High (default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- (off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High: The event is treated as a high priority alarm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- : No visual or acoustic alarm signals are triggered.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Archive settings		
- **Off** (default)		This archive setting cannot be configured for this alarm message. The archive setting follows the general archive status for mean arterial pressure parameter. For details on how to change the archive settings of a parameter, refer to page 115.
- **Store**		
- **Record**		
- **Str/Rec**		
Configuring the arrhythmia alarm setup

The following diagram shows the **Limits > ARR** page for configuring the alarm settings for arrhythmia parameters. This page consists of a table with setup rows for each arrhythmia parameter. Each setup row consists of several fields for configuring the individual ARR alarm settings. When you select a field on this page, an orange frame highlights the selected row.

Configuring ARR alarm settings

In addition to ARR alarm settings, the **Limits > ARR** page also allows you to select the arrhythmia mode (see page 202) and initiate the relearn process of ECG leads (see page 217). In the following steps, the letters in parentheses refer to the diagram of the **Limits > ARR** page. Alarm ranges and defaults are listed starting on page 141.
To change ARR alarm settings

1. Select the Alarms... button on the main menu bar.
2. Select the Limits tab (if not already selected).
3. Select the ARR tab along the right side.
4. Select the corresponding setup button in the Alarm priority column (C) to select the alarm priority. A crossed-out triangle appears when alarm monitoring is deactivated. The priority for asystole and ventricular fibrillation events cannot be changed. The alarm priority ‘high’ is always assigned to these categories.
5. Select the corresponding setup button in the Rate column (D) to set the rate.
6. Select the corresponding setup button in the Count column (E) to set the count.
7. Use one of the following settings in the Archive column (F) to determine what happens in response to an alarm:
 - Off – no event is stored and no recording is generated.
 - Store – stores the event for later review (see page 128).
 - Record – generates a timed recording.
 - Str/Rec – generates a timed recording and stores the event.
8. Select the desired arrhythmia mode using the Arrhythmia mode buttons (H).

Alarm setup for ST

The following diagram shows the Limits > ST page where you configure alarm settings for ST parameters. This page consists of a table with setup rows for each ST parameter. Each setup row has several fields for configuring the individual ST alarm settings. When you select a field on the page, an orange frame highlights the selected row to mark your place on the setup page.
Alarms

A Limits tab
B Parameter label column
C Alarm on/off column
D Lower limits column
E Actual parameter values
F Upper limits column
G Archive column
H ST tab
I Auto set all button
J Event duration [s] button
K ST relearn button
Alarms

Configuring ST alarm settings

Some of the ST alarm settings described are also available on the ST alarms page (see page 214). In the following steps, the letters in parentheses refer to the diagram of the Limits > ST page (see page 123). Alarm ranges and defaults are listed starting on page 134.

To change ST alarm settings

1. Select the Alarms... button on the main menu bar.
2. Select the Limits tab (if not already selected).
3. Select the ST tab (H) on the right side of the page.
4. Select the setup button in the Alarm column (C) to activate or deactivate alarm monitoring. A crossed-out triangle appears in the parameter box when alarm monitoring is deactivated.
5. Select the corresponding setup button in the Lower column (D) to adjust the lower alarm limits.
6. Select the corresponding setup button in the Upper column (F) to adjust the upper alarm limits.
7. Use one of the following settings in the Archive column (G) to determine what happens in response to an alarm:
 - Off – no event is stored and no recording is generated.
 - Store – stores the event for later review (see page 128).
 - Record – generates a timed recording
 - Str/Rec – generates a timed recording and stores the event.
8. Use the Auto set all (I) button to adjust the alarm limits for all ST parameters (see page 127).
9. Use the Event duration [s] button (J) to select a time an upper ST alarm limit has to be in violation before an alarm is triggered (see page 99).
Auto setting all alarm limits

The auto set function allows you to adjust alarm limits quickly based on preset percentages listed in the following table.

You can either auto set:
- individual parameters (see page 127)
- all parameters (see page 127)
- all ST parameters (see page 127)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Upper limit</th>
<th>Lower limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta, Tb, T1a, T1b, Tblood</td>
<td>≤107 % of current value</td>
<td>≤93 % of current value</td>
</tr>
<tr>
<td>ΔT, ΔT1, PVC/min, inCO2</td>
<td>Not affected</td>
<td>Not affected</td>
</tr>
<tr>
<td>SpO2</td>
<td>Adult/pediatric: 100 % saturation</td>
<td>Current value –((value)*(5 %))</td>
</tr>
<tr>
<td></td>
<td>Neonate: 98 % saturation</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Current value +2.0 mm</td>
<td>Current value –2.0 mm</td>
</tr>
<tr>
<td>etCO2</td>
<td>Current value +25 %</td>
<td>Current value –20 %</td>
</tr>
<tr>
<td>All others</td>
<td>Alarm limit that is closest to but not more than 25 % above the current value of the parameter.</td>
<td>Alarm limit that is closest to but not more than 20 % below the current value of the parameter.</td>
</tr>
</tbody>
</table>

NOTE
If the Auto set function forces the alarm limits of a parameter outside the allowable limit range of the monitor, the alarm limits remain unchanged.
To auto set an individual parameter

1. Select the parameter box of the desired parameter.

2. Select the Auto set button located in the upper-right corner of each parameter setup page.

 or

1. Select Sensor parameters... on the main menu bar.

2. Select the tab of the desired parameter.

3. Select the Auto set button located in the upper right corner of each parameter setup page.

To auto set all parameters

- Select the symbol next to the Alarms... button on the main menu bar > Auto set all.

 or

1. Select the Alarms... button on the main menu bar

2. Select the Limits tab.

3. Select the Auto set button which is located in the lower right corner below the parameter setup table.

To auto set all ST parameters

1. Select the Alarms... button on the main menu bar

2. Select the Limits tab.

3. Select the ST side tab to access the ST page.

4. Select the Auto set button which is located below the ST table.

Alarm history and stored events

The alarm history is an electronic record of alarms and events. The alarm history records an entry under the following circumstances:

- An alarm occurs for a parameter whose archive function is set to Store or Str/Rec. These alarm events are marked with the symbol and can be viewed in greater detail (see page 129).

- Whenever an arrhythmia event occurs (even when the alarm function is deactivated). Only the archive function has to be set to Store or Str/Rec.

- You select the Mark event button from the main menu bar. These alarm events are also marked with the symbol and can be viewed in greater detail (see page 129).

- You pause alarms using the All alarms paused/All alarms off button (see page 109).

- You activate Cardiac bypass mode (see page 107).

- You activate Standby mode (see page 77).

- You select a different patient category (see page 90).

- You transfer a patient.

- You audio pause an alarm.

The alarm history stores up to 150 events. When the storage capacity of 150 events is reached, new events replace the oldest events.

If a higher priority alarm occurs less than 5 seconds from a previous alarm, the higher priority alarm event is stored while the previous one is deleted.
Alarm history after shutdown

The alarm history is maintained until the patient is discharged. If the Cockpit is turned off and turned back on, the patient's alarm history is not affected. However, the alarm history will not record the time of the shut down.

Viewing the alarm history

The following diagram shows an alarm history. When you select any field on the table, a frame highlights the selected row. For information on what conditions prompt an entry to be stored in the alarm history, see page 127.

To access the alarm history

1. Select the **Alarms**... button on the main menu bar.
2. Select the **Alarm history** tab.

To filter the alarm history

The alarm history can be filtered according to different categories as follows:

1. Select the **Alarms**... button on the main menu bar.
2. Select the **Alarm history** tab.
3. Use the left button (J) to restrict the alarm history to one of the following alarm conditions:
 - All
 - Arrhythmia
 - High-priority
 - Medium-priority
 - Low-priority
4. Use the second left button (I) to restrict the alarm history to one of the following settings:
 - Time
 - Priority
 - Message
Viewing a snapshot of a single event

20 seconds of waveform and parameter data are stored automatically in the alarm history under the following circumstances:

- A parameter whose recording archive feature is set to Store or Str/Rec (see page 114) violates set alarm limits.
- You select the Mark event button on the main menu bar.

In both instances, events with stored waveform and parameter data are identified on the alarm history by the following symbol \[\uparrow \vdash \]. Such an event consists of a snapshot of all connected parameter values and waveforms. Of the 20-second event capture, 10 seconds were recorded before and 10 seconds were recorded after the event occurred.

To view a snapshot of a stored event

1. Select Alarms... on the main menu bar.
2. Select the Alarm history tab.
3. Select the row of the event marked with the \[\uparrow \vdash \] symbol that you wish to view.

NOTE
To return to the alarm history, select the Select event button.
Viewing current alarms

The Current alarms page displays all alarms that occur during a patient's monitoring session. The page is cleared when the patient is discharged. Each alarm displays the alarm priority, the duration, and the corresponding message.

To view current alarms
1. Select Alarms... on the main menu bar.
2. Select the Current alarms tab.

Configuring alarm settings temporarily

The following table contains several commonly used alarm settings that can be configured for a patient temporarily. These features revert to the password-protected configuration settings (see chapter System configuration starting on page 389) when the patient is discharged.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm volume</td>
<td>Off, 5 %, 10 to 100 % (in increments of 10 %); default is 50 %</td>
<td>Determines the volume of the alarm tone. You can never turn the alarm volume lower than the selected setting for Minimum alarm volume.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The 5 % setting is only available when the Minimum alarm volume setting is set to 5 %</td>
<td>NOTES: Make sure the alarm tone volume is set so it can be heard in the monitoring environment. The setting Off for the alarm volume is only available under the following circumstances: – When the Cockpit is in OR mode or assigned to an ICS. – When the Minimum alarm volume feature is set to Off.</td>
</tr>
<tr>
<td>Pulse tone volume</td>
<td>Off</td>
<td>Determines the volume of the pulse tone.</td>
</tr>
<tr>
<td></td>
<td>5, 10 (default) to 100 % (in increments of 10 %)</td>
<td></td>
</tr>
<tr>
<td>Attention tone volume</td>
<td>Off</td>
<td>Determines the volume of the attention tone or deactivates the attention tone.</td>
</tr>
<tr>
<td></td>
<td>5, 10 (default) to 100 % (in increments of 10 %)</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the SpO2 alarm priority

The following two SpO2 alarm messages can be configured for the alarm priority that is most appropriate for your care environment. Depending on which MCable is used, the message reporting the underlying alarm condition differs:

- Masimo: SpO2 sensor off
- Nellcor: SpO2 check sensor

Both alarm settings are saved as part of the patient profile.

Configuring the alarm priority for a Masimo sensor off message

The SpO2 sensor off message appears when the MCable detects that the sensor is no longer attached to the patient. The alarm priority for this message can be configured separately for each patient category. It is available for the following SpO2 cables:

- Masimo rainbow SET MCable
- Masimo SET MCable

For information on how to configure the alarm priority for the setting SpO2 sensor off, see page 404.

Configuring the alarm priority for a Nellcor check sensor message

This alarm setting is for configuring the alarm priority and the alarm archiving behavior of certain Nellcor SpO2 parameters. The message SpO2 check sensor appears when the Nellcor OxiMax MCable detects that the sensor is no longer attached to the patient or other technical issues that interfere with the proper functioning of the sensor. This feature

Alarm limits display

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm limits display</td>
<td>– On (default)</td>
<td>Determines whether alarm limits appear in the parameter boxes.</td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac bypass

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– On</td>
<td>Activates/deactivates cardiac bypass mode. Alarm functions are affected when cardiac bypass mode is activated (see page 107).</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>This mode is not available when the French NFC mode is enabled (see page 419).</td>
</tr>
</tbody>
</table>

The following SpO2 parameters can generate this alarm message according to the selected alarm priority:

<table>
<thead>
<tr>
<th>Masimo rainbow SET MCable</th>
<th>Masimo SET MCable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2</td>
<td>SpO2</td>
</tr>
<tr>
<td>PLS</td>
<td>PLS</td>
</tr>
<tr>
<td>SpHb or SpHbv</td>
<td></td>
</tr>
<tr>
<td>SpCO</td>
<td></td>
</tr>
<tr>
<td>PVI</td>
<td></td>
</tr>
<tr>
<td>SpMet</td>
<td></td>
</tr>
<tr>
<td>SpOC</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
</tr>
</tbody>
</table>

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 131
Alarms

The following SpO2 parameters generate an alarm message according to the selected alarm priority:

- SpO2
- PLS

Remote alarm control

When the Cockpit is connected to the Infinity network, it communicates with other Infinity monitors (including other monitoring Cockpits) that support remote viewing functions. Furthermore, the patient of any monitor that is connected to the network can be admitted at the ICS for central monitoring.

If you are viewing another monitor in remote view, you can audio pause alarms at the remote bed. You can also allow remote devices to audio pause alarms at the Cockpit provided the remote control feature is activated (see page 421).

A Cockpit that is connected to the Infinity network automatically relays alarms to the ICS. A network interruption causes the following to happen:

- A message indicating that there is a network interruption appears in the message field of the Cockpit.
- If the alarm volume was deactivated, the Cockpit Alarm volume setting (see page 404) changes to 100% when the Cockpit is offline from the Infinity network and defaults to 50% when the Cockpit no longer communicates with the ICS. Once communication is restored, the alarm volume returns to the previous setting.

Alarm groups

The Cockpit can receive alarm messages from other monitors that are connected to the Infinity network. However, these monitors must be in the same monitoring unit and in the same alarm group as the Cockpit.

The alarm group feature allows you to configure several monitors as members of a group. All alarms that occur at any of the monitors within the group are broadcast to all the members in the alarm group, typically in less than two seconds. If multiple monitors in the alarm group are in alarm simultaneously, each alarm message rotates in the header bar of the Cockpit and in the alarm message field of each monitor. Technical personnel with access to the necessary password configure alarm groups and monitoring units (see page 404).

Infinity MCable – Nurse call

You can attach a Nurse Call MCable to the PS250 or the P2500 (see page 23) and connect it to an external nurse call system. Whenever the M540, the Cockpit or a connected external device produces a medium or high-priority alarm, a nurse call system is activated to provide remote notification of the alarm condition.
External device disconnection alarm

If the external device alarm feature is activated at the Cockpit (see page 407) and an external device is disconnected from the Cockpit, the following happens at the ICS and at the Cockpit:

– An alarm tone of low priority sounds.
– The message *External device disconnected* appears.

The Code function

You can configure a set of monitoring functions that can be activated during emergency care by selecting the *Code* button on the main menu bar. Depending on which of these settings are activated (see page 410), any of the following happens when you select the *Code* button:

– A continuous recording starts
– NIBP measurements start in continuous mode
– The alarm volume of the alarm condition with the highest priority is automatically reduced to the minimum setting.

In addition to activating the pre-configured features, a timer appears in the header bar with the following two buttons:

– *Stop* for stopping the timer. The label of the button changes to *Start*.
– *Reset* button for resetting the timer to zero.

The *Code* button does not function unless the M540 is docked.

NOTE

When the *Audio off* setting is set to *Off* (see page 407), the banner *Audio off* and the symbol 🎧 appear in the Cockpit header bar when you invoke the Code function.

– The pre-configured *All alarms off* setting determines if the alarm annunciation is deactivated and the *All alarms off* banner appears in the header bar when you press the *Code* button (see page 411).

NOTE

When the *All alarms off* setting is set to *Off* (see page 407), the banner *Audio alarms off* and the symbol 🎧 appear in the Cockpit header bar when you invoke the Code function.

To activate the Code function

- Press the *Code* button on the main menu bar.

To deactivate the Code function

- Press the *Code* button on the main menu bar a second time. All functions are deactivated.
Alarm ranges and defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR adult</td>
<td>Increment: 5 bpm</td>
<td>Upper: 25 to 300 bpm</td>
<td>120 (adult)</td>
<td>Str/Rec (adult/pediatric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 20 to 295 bpm</td>
<td>150 (pediatric)</td>
<td>(adult/pediatric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170 (neonatal)</td>
<td>Off (neonatal)</td>
</tr>
<tr>
<td>STVM/STCVM</td>
<td>Increment: 0.1 mm or 0.01 mV</td>
<td>Upper: 0.1 to 45.0 mm</td>
<td>1.0 mm (0.1 mV)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 0.0 to 44.9 mm</td>
<td>0.0 mm (0 mV)</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Increment: 0.1 mm or 0.01 mV</td>
<td>Upper: –14.9 to</td>
<td>1.0 mm (0.1 mV)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+15.0 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–1.49 to +1.50 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: –15.0 to</td>
<td>–1.0 mm (–0.1 mV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+14.9 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–1.50 to +1.49 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRI (adult)</td>
<td>Increment: 1</td>
<td>Upper: 6 to 100</td>
<td>30</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 5 to 99 (adult)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RRI (pediatric, neonate)</td>
<td>Increment: 1</td>
<td>Upper: 6 to 145</td>
<td>80</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 5 to 144</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>PLS</td>
<td>Increment of 5</td>
<td>Upper: 35 to 235</td>
<td>120 (adult)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 30 to 230</td>
<td>150 (pediatric)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180 (neonate)</td>
<td></td>
</tr>
<tr>
<td>SpOz</td>
<td>Increment: 1</td>
<td>Upper: 21 to 100 %</td>
<td>100 % (adult, pediatric)</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 20 to 99 %</td>
<td>95 % (neonate)</td>
<td></td>
</tr>
<tr>
<td>SpHb / SpHbv</td>
<td>Increment 0.2 g/dL (0.1 mmol/L)</td>
<td>Upper: 1.2 to 25.0 g/dL (0.7 to 15.5 mmol/L)</td>
<td>17.0 g/dL (10.6 mmol/L)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 1.0 to 24.8 g/dL (0.6 to 15.4 mmol/L)</td>
<td>7.0 g/dL (4.3 mmol/L)</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Alarm limit range</td>
<td>Upper limit defaults</td>
<td>Lower limit defaults</td>
<td>Archive default setting</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>PVI</td>
<td>Increment: 1</td>
<td>Upper: 1 to 100</td>
<td>100</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 0 to 99</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SpCO</td>
<td>Increment: 1</td>
<td>Upper: 1 to 99</td>
<td>10</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 0 to 98</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SpMet</td>
<td>Increment: 0.1</td>
<td>Upper: 0.1 to 99.9</td>
<td>3.0</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 0.0 to 99.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NIBP S adult</td>
<td>Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: 11 to 250 mmHg</td>
<td>160 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 to 33.3 kPa</td>
<td>21.3 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 10 to 249 mmHg</td>
<td>90 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 to 33.2 kPa</td>
<td>12.0 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 mmHg</td>
<td>50 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.7 kPa</td>
<td>6.7 kPa</td>
<td></td>
</tr>
<tr>
<td>NIBP S neonate</td>
<td>Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: 11 to 130 mmHg</td>
<td>80 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 to 17.3 kPa</td>
<td>10.7 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 10 to 129 mmHg</td>
<td>50 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 to 17.2 kPa</td>
<td>6.7 kPa</td>
<td></td>
</tr>
<tr>
<td>NIBP D adult</td>
<td>Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: 11 to 250 mmHg</td>
<td>110 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 to 33.3 kPa</td>
<td>50 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 10 to 249 mmHg</td>
<td>50 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 to 33.2 kPa</td>
<td>6.7 kPa</td>
<td></td>
</tr>
<tr>
<td>NIBP D pediatric</td>
<td>Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: 11 to 170 mmHg</td>
<td>80 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 to 22.7 kPa</td>
<td>10.7 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 10 to 169 mmHg</td>
<td>35 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 to 22.6 kPa</td>
<td>4.7 kPa</td>
<td></td>
</tr>
<tr>
<td>NIBP D neonate</td>
<td>Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: 11 to 130 mmHg</td>
<td>60 mmHg</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 to 17.3 kPa</td>
<td>8 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower: 10 to 129 mmHg</td>
<td>25 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 to 17.2 kPa</td>
<td>3.3 kPa</td>
<td></td>
</tr>
</tbody>
</table>
Alarms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
</table>
| NIBP M adult Increment: 1 mmHg or 0.1 kPa | Upper: 11 to 250 mmHg
1.4 to 33.3 kPa
1.3 to 33.2 kPa
Lower: 10 to 249 mmHg
1.3 to 33.2 kPa | 125 mmHg
16.7 kPa | 60 mmHg
8.0 kPa | On |
| NIBP M pediatric Increment: 1 mmHg or 0.1 kPa | Upper: 11 to 170 mmHg
1.4 to 22.7 kPa
1.3 to 22.6 kPa
Lower: 10 to 169 mmHg
1.3 to 22.6 kPa | 85 mmHg
11.3 kPa | 40 mmHg
5.3 kPa | On |
| NIBP M neonate Increment: 1 mmHg or 0.1 kPa | Upper: 11 to 130 mmHg
1.4 to 17.3 kPa
1.3 to 17.2 kPa
Lower: 10 to 129 mmHg
1.3 to 17.2 kPa | 70 mmHg
9.3 kPa | 40 mmHg
5.3 kPa | On |
| ΔTx Increment: 0.1 °C or 0.1 ± 0.2 °F | Upper: 0.1 to 39.0 °C
0.2 to 70.2 °F
0.0 to 70.0 °F
Lower: 0.0 to 38.9 °C
0.0 to 70.0 °F | 1.0 °C
3.6 °F | 0.0 °C
0.0 °F | Off |
| Txa/b Increment: 0.1 °C or 0.1 °F | Upper: 0.1 to 50.0 °C
32.2 to 122.0 °F
32.0 to 121.8 °F
Lower: 0.0 to 49.9 °C
32.0 to 121.8 °F | 39.0 °C
102.2 °F | 34.0 °C
93.2 °F | Off |
| IBP S adult Increment: 1 mmHg or 0.1 kPa | Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
–3.3 to +39.9 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 160 mmHg (21.3 kPa) for GP1 S to GP4 S, ART S, LV S
35 mmHg (4.7 kPa) for PA S, RV S | – 90 mmHg (12.0 kPa) for GP1 S to GP4 S, ART S
75 mmHg (10.0 kPa) for LV S
10 mmHg (1.3 kPa) for PA S, RV S | GP1 S to GP4 S, LV S, RV S: Off
PA S, ART S: On |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
</table>
| **IBP S pediatric/neonate**
Increment: 1 mmHg or 0.1 kPa |
Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 120 mmHg (16.0 kPa) for GP1 S to GP4 S, ART S, LV S
– 35 mmHg (4.7 kPa) for PA S, RV S | – 50 mmHg (6.7 kPa) for GP1 S to GP4 S, ART S
– 75 mmHg (10.0 kPa) for LV S
– 10 mmHg (1.3 kPa) for PA S, RV S | GP1 S to GP4 S, LV S, RV S: Off
PA S, ART S: On |
| **IBP D adult**
Increment: 1 mmHg or 0.1 kPa |
Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 110 mmHg (14.7 kPa) for GP1 D to GP4 D, ART D
– 25 mmHg (3.3 kPa) for LV D
– 13 mmHg (1.7 kPa) for PA D, RV D | – 50 mmHg (6.7 kPa) for GP1 D to GP4 D, ART D
– 2 mmHg (0.3 kPa) for PA D, LV D, RV D | GP1 D to GP4 D, LV D, RV D: Off
ART D, PA D: On |
| **IBP D pediatric**
Increment: 1 mmHg or 0.1 kPa |
Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 80 mmHg (10.7 kPa) for GP1 D to GP4 D, ART D
– 25 mmHg (3.3 kPa) for LV D
– 13 mmHg (1.7 kPa) for PA D, RV D | – 30 mmHg (4.0 kPa) for GP1 D to GP4 D, ART D
– 2 mmHg (0.3 kPa) for PA D, LV D, RV D | GP1 D to GP4 D, LV D, RV D: Off
ART D, PA D: On |
Alarms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
</table>
| **IBP D neonate**
Increment: 1 mmHg or 0.1 kPa | Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 80 mmHg (10.7 kPa) for GP1 D to GP4 D, PA D
– 25 mmHg (3.3 kPa) for LV D
– 13 mmHg (1.7 kPa) for PA D, RV D | – 35 mmHg (4.7 kPa) for GP1 D to GP4 D, PA D
2 mmHg (0.3 kPa) for PA D, LV D, RV D | GP1 D to GP4 D,
RV D: **Off**
PA D, PA D: **On** |

| **IBP M adult**
Increment: 1 mmHg or 0.1 kPa | Upper: –24 to +300 mmHg
–3.2 to +40.0 kPa
Lower: –25 to +299 mmHg
–3.3 to +39.9 kPa | – 125 mmHg (16.7 kPa) for GP1 M to GP4 M, ART M
80 mmHg (10.7 kPa) for LV M
20 mmHg (2.7 kPa) for LA, ICP, CVP
17 mmHg (2.3 kPa) for PA M, RV M
12 mmHg (1.6 kPa) for RA | – 60 mmHg (8.0 kPa) for GP1 M to GP4 M, ART M
40 mmHg (5.3 kPa) for LV M
7 mmHg (0.9 kPa) for PA M, RV M
2 mmHg (0.3 kPa) for RA, ICP
0 mmHg (0.0 kPa) for LA, CVP | **On** |
Alarms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBP M pediatric
 Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: –24 to +300 mmHg
 -3.2 to +40.0 kPa
 Lower: –25 to +299 mmHg
 -3.3 to +39.9 kPa</td>
<td>– 80 mmHg (10.7 kPa) for GP1 M to GP4 M, ART M, LV M
 – 20 mmHg (2.7 kPa) for PA M, RV M
 – 17 mmHg (2.3 kPa) for RA</td>
<td>– 50 mmHg (6.7 kPa) for GP1 M to GP4 M, ART M
 – 40 mmHg (5.3 kPa) for LV M
 – 7 mmHg (0.9 kPa) for PA M, RV M
 – 2 mmHg (0.3 kPa) for RA, ICP
 – 0 mmHg (0.0 kPa) for LA, CVP</td>
<td>On</td>
</tr>
<tr>
<td>IBP M neonate
 Increment: 1 mmHg or 0.1 kPa</td>
<td>Upper: –24 to +300 mmHg
 -3.2 to +40.0 kPa
 Lower: –25 to +299 mmHg
 -3.3 to +39.9 kPa</td>
<td>– 85 mmHg (11.3 kPa) for GP1 M to GP4 M, ART M
 – 80 mmHg (10.7 kPa) for LV M
 – 20 mmHg (2.7 kPa) for LA, ICP, CVP
 – 17 mmHg (2.3 kPa) for PA M, RV M
 – 12 mmHg (1.6 kPa) for RA</td>
<td>– 40 mmHg (5.3 kPa) for GP1 M to GP4 M, ART M, LV M
 – 7 mmHg (0.9 kPa) for PA M, RV M
 – 2 mmHg (0.3 kPa) for RA, ICP
 – 0 mmHg (0.0 kPa) for LA, CVP</td>
<td>On</td>
</tr>
</tbody>
</table>
Alarms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm limit range</th>
<th>Upper limit defaults</th>
<th>Lower limit defaults</th>
<th>Archive default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP</td>
<td>Upper: –24 to +300 mmHg</td>
<td>100 mmHg (13.3 kPa)</td>
<td>70 mmHg (9.3 kPa)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>–3.2 to +40.0 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower: –25 to +299 mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>–3.3 to +39.9 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tblood</td>
<td>Upper: 25.1 to 43.0 °C</td>
<td>39.0 °C (102.2 °F)</td>
<td>34.0 °C (93.2 °F)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>77.1 to 109.4 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower: 25.0 to 42.9 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.0 to 109.2 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRc</td>
<td>Upper: 6 to 150 bpm</td>
<td>30 bpm (adult)</td>
<td>5 bpm (adult)</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Lower: 5 to 149 bpm</td>
<td>60 bpm (pediatric/neonate)</td>
<td>20 bpm (pediatric/neonate)</td>
<td></td>
</tr>
<tr>
<td>inCO2</td>
<td>Upper: 2 to 10 mmHg</td>
<td>4 mmHg (0.5 kPa, 0.5 %)</td>
<td>Not applicable</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>0.3 to 1.3 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3 to 1.3 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower: not user-selectable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etCO2</td>
<td>Upper: 6 to 100 mmHg</td>
<td>50 mmHg (6.7 kPa, 6.6 %)</td>
<td>30 mmHg (4.0 kPa, 3.9 %)</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>0.8 to 13.3 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8 to 13.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower: 5 to 99 mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 to 13.2 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 to 13.0 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC/min</td>
<td>Upper: 1 to 50</td>
<td>10</td>
<td>not applicable</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Increment of 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Arrhythmia ranges and defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alarm priority default</th>
<th>Rate (default)</th>
<th>Count (default)</th>
<th>Alarm archive factory default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASY</td>
<td>High</td>
<td>Not adjustable</td>
<td>Not adjustable</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>VF</td>
<td>High</td>
<td>Not adjustable</td>
<td>Not adjustable</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>VTACH</td>
<td>High</td>
<td>≥100 to 200 (≥120) increments of 10</td>
<td>≥5 to 15 (≥10) increments of 1</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>ARTF</td>
<td>Off</td>
<td>Not adjustable</td>
<td>Not adjustable</td>
<td>Off</td>
</tr>
<tr>
<td>RUN</td>
<td>Medium</td>
<td>not adjustable (Rate = VTACH) 3 to VT count – 1 (3 to 9) changes based on VTACH</td>
<td>Str/Rec</td>
<td></td>
</tr>
<tr>
<td>AIVR</td>
<td>Medium</td>
<td>Not adjustable = VTACH rate – 1 (≤119)</td>
<td>Not adjustable (≥3)</td>
<td>Off</td>
</tr>
<tr>
<td>SVT</td>
<td>Medium</td>
<td>≥120 to 200 (≥150) increments of 10</td>
<td>≥3 to 10 (≥3) increments of 1</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>CPT</td>
<td>Low</td>
<td>Not adjustable</td>
<td>Not adjustable</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>BGM</td>
<td>Low</td>
<td>Not adjustable</td>
<td>Not adjustable</td>
<td>Str/Rec</td>
</tr>
<tr>
<td>TACH</td>
<td>Off</td>
<td>≥100 to 200 (≥130) increments of 10</td>
<td>≥5 to 15 (≥8) increments of 1</td>
<td>Off</td>
</tr>
<tr>
<td>BRADY</td>
<td>Off</td>
<td>≤30 to 105 (adult ≤ 50; pediatric ≤ 60) increment of 5</td>
<td>Not adjustable (≥8)</td>
<td>Off</td>
</tr>
<tr>
<td>Pause</td>
<td>Off</td>
<td>1 to 3.5 (2.5) increments of 0.5</td>
<td>Not adjustable</td>
<td>Off</td>
</tr>
</tbody>
</table>

Alarms
This page intentionally left blank.
Calculations

Overview ... 144
Calculating the body surface area 144

Accessing the calculation functions 145
Performing calculations 145

Viewing the calculation results 147
Viewing and saving calculations 147

Lab data ... 148
Capturing lab data 148

Calculation equations 149
Hemodynamic parameters 149
Oxygenation and ventilation parameters 151

Drug calculations 153

Accessing the drug calculation functions .. 153
Performing drug calculations 154

Customized drug list 154
Customizing the drug list 155

Drug calculator equations 156
Overview

With the physiological calculations option, the Cockpit performs physiological calculations using data acquired by the M540 and other devices. The Cockpit stores derived parameters and displays them.

When the Cockpit is connected to the network, you can obtain laboratory data through the Trends/Data... page.

The Cockpit can also be configured to calculate drug-related parameters, including concentration, rate, total dose, and total volume.

In addition to the standard calculation features, two additional features are available with the physiological calculations software option:

- Hemodynamics – the Cockpit calculates hemodynamic parameters based on cardiac output, invasive blood pressure, and other data (see page 149).
- Hemo/Oxy/Vent Calculations – the Cockpit calculates oxygenation and ventilation parameters (see page 151) in addition to hemodynamic parameters.

Calculating the body surface area

The Ht (height) and current Wt (weight) values are used to compute the BSA (body surface area) in m². For adult and pediatric patients, these values are pulled automatically from the Demographics page which is populated during patient admission (see page 90). Because of changing body weight, you must enter the weight manually for neonates. This is to make sure that the most current value is used to calculate the BSA.

The BSA value is required for all indexed calculations such as cardiac index (CI). The available units for height are cm and inches. The available units for weight are kg, g, ounces, lb.

The following Boyd or DuBois equations are used to compute the BSA.

The Boyd equation is used for patients whose weight is less than 15 kg and whose height is less than 80 cm:

Boyd equation

\[
BSA = Wt^{(0.7285 - 0.0188 \times \log_{10}WT))} \times Ht^{0.3} \times 0.0003207
\]

DuBois equation

\[
BSA = Wt^{0.425} \times Ht^{0.725} \times 0.007184
\]

Note:

Wt = Weight, Ht = Height, BSA = Body surface area
Accessing the calculation functions

The following diagram shows the Calculations page for calculating hemodynamic, oxygenation, and ventilation parameters.

![Diagram of calculation functions]

A Calculations tab
B Capture values button
C Capture labs button (see page 148)
D Calculate results button (see page 147)
E Results tab
F Labs parameter buttons
G Weight and Height buttons
H BSA value
I Oxygenation/Ventilation parameters
J Hemodynamics parameter values

Performing calculations

Calculations are based on automatically captured and manually entered values. In pediatric and adult mode, the current height and weight used to compute the BSA value, are taken from the Demographics page the first time you capture any values. In neonatal mode you must enter the weight manually. The height is taken from the Demographics page, if available.

NOTE

Before performing a calculation, measure pulmonary wedge pressure and cardiac output (if desired) because some of the calculated values cannot be determined without these parameter values.
To perform a calculation

In the following steps, the letters in parentheses correspond to the diagram for the Calculations page (see page 145).

1. Select the Procedures... button from the main menu bar.
2. Select the Calculations tab (if not already selected).
3. Select the Capture values button (B). The Cockpit populates the available parameter buttons with the current values.
4. Select the Capture labs button (C). The Cockpit populates the available lab parameter buttons with current values.
5. Edit or add any value by selecting the button next to a parameter label to activate a popup with a keypad. The popup displays the valid range of the selected parameter. Any modified value is identified by the symbol #.
6. Select the Enter button on the keypad popup to confirm your input. Any value that has been altered manually is identified with the symbol #.
7. Repeat steps 4 and 5 for additional parameters.
8. Select the Calculate results button (D). The calculated values are listed.
Calculations

Viewing the calculation results

The following diagram shows the Results page for viewing hemodynamic, oxygenation, and ventilation parameters.

A Calculations tab
B Parameters column
C Data column with reference values
D Data columns with date and time stamp
E Calculation tab (see page 145)
F Results tab
G Scroll bar
H Save button
I Setup button

Viewing and saving calculations

The Results page allows you to configure the display and save calculations. You can save up to 50 calculations before they are overwritten on a first-in first-out basis. The scroll bar (G) consists of single and double arrow keys and a moveable bar. The double arrows scroll through larger portions than the single arrows. You can also drag the navigation bar located between the arrow keys to the desired location. The same page is also available under the Hemo tab (see page 176).
Calculations

To view calculations

In the following steps, the letters in parentheses correspond to the diagram for the Results page (see page 147).

1. Select the Procedures... button from the main menu bar.
2. Select the Calculations tab (if not already selected).
3. Select the Results tab (if not already selected).
4. Select the Setup button (I) to activate a popup window for selecting which parameters are included and excluded from display. The parameters on the dark background are selected for display, the ones on light background are not.
 The Auto-sort button in the dialog window allows you to sort the parameter list according to the parameter priority list in the Auto view page (see page 58). If you add parameters to the parameter priority list, you must order these parameters manually.
5. Select the OK button in the popup window to confirm your selection. The list of parameters is adjusted accordingly on the Results page.

To save calculations

1. Select the Procedures... button from the main menu bar.
2. Select the Calculations tab if not selected.
3. Select the Results tab.
4. Select the column of calculations you wish to save as reference values. An orange frame highlights the selected column.
5. Select the Save button (H) to save the selected calculations.

Lab data

You can include lab data in calculations of derived parameters.

Capturing lab data

The blood-analysis device available on the network determines which lab parameters are available. You can review the results on the Results page (see page 147). From there you can also save the calculations and configure the display.

To capture lab data

1. Select the Procedures... button on the main menu bar.
2. Select the Calculations > Calculations tabs.
3. Select the Capture labs button (C) on the Calculations page (see page 145).
Calculations

Calculation equations

The following section describes which monitored parameters and equations the Cockpit uses to calculate hemodynamic, oxygenation and ventilation calculations.

Hemodynamic parameters

The Cockpit uses the following monitored parameter values for the hemodynamic calculations.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Available units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART S</td>
<td>Systolic arterial pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>ART M</td>
<td>Mean arterial pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>ART D</td>
<td>Diastolic arterial pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>C.O.</td>
<td>Cardiac output (intermittent)</td>
<td>L/min</td>
</tr>
<tr>
<td>CCO</td>
<td>Cardiac output (continuous)</td>
<td>L/min</td>
</tr>
<tr>
<td>CVP</td>
<td>Central venous pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
<td>bpm</td>
</tr>
<tr>
<td>PA M</td>
<td>Mean pulmonary arterial pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>PWP</td>
<td>Pulmonary capillary wedge pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>ICI</td>
<td>Intermittent cardiac index</td>
<td>L/min/m²</td>
</tr>
<tr>
<td>ICO</td>
<td>Intermittent cardiac output</td>
<td>L/min/m²</td>
</tr>
</tbody>
</table>
The Cockpit uses the values in the preceding table plus the BSA value to calculate the following derived hemodynamic values.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Equation</th>
<th>Available units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI, CCI</td>
<td>Cardiac index (continuous)</td>
<td>C.O. / BSA, CCO / BSA</td>
<td>L/min/m²</td>
</tr>
<tr>
<td>LHCPP</td>
<td>Left heart coronary perfusion pressure</td>
<td>ART D – PWP</td>
<td>mmHg</td>
</tr>
<tr>
<td>LVSW</td>
<td>Left ventricular stroke work</td>
<td>0.0136 x (ART M – PWP) x SV</td>
<td>g x m</td>
</tr>
<tr>
<td>LVSWI</td>
<td>Left ventricular stroke work index</td>
<td>0.0136 x (ART M – PWP) x SVI</td>
<td>g x m/m²</td>
</tr>
<tr>
<td>PVR</td>
<td>Pulmonary vascular resistance</td>
<td>79.96 x ((PA M – PWP) / C.O.)</td>
<td>dyn x s/cm⁵</td>
</tr>
<tr>
<td>PVRI</td>
<td>Pulmonary vascular resistance index</td>
<td>79.96 x ((PA M – PWP) / CI)</td>
<td>dyn x s/cm⁵/m²</td>
</tr>
<tr>
<td>RPP</td>
<td>Rate pressure product</td>
<td>ART S x HR</td>
<td>mmHg/min</td>
</tr>
<tr>
<td>RVSW</td>
<td>Right ventricular stroke work</td>
<td>0.0136 x (PA M – CVP) x SV</td>
<td>g x m</td>
</tr>
<tr>
<td>RVSWI</td>
<td>Right ventricular stroke work index</td>
<td>0.0136 x (PA M – CVP) x SVI</td>
<td>g x m/m²</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke volume</td>
<td>C.O. x 1000 / HR</td>
<td>mL</td>
</tr>
<tr>
<td>SVI</td>
<td>Stroke volume index</td>
<td>1000 x (CI / HR)</td>
<td>mL/m²</td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic vascular resistance</td>
<td>79.96 x (ART M – CVP) / C.O.</td>
<td>dyn x s/cm⁵</td>
</tr>
<tr>
<td>SVRI</td>
<td>Systemic vascular resistance index</td>
<td>79.96 x (ART M – CVP) / CI</td>
<td>dyn x s/cm⁵/m²</td>
</tr>
<tr>
<td>TPR</td>
<td>Total pulmonary resistance</td>
<td>79.96 x PA M / C.O.</td>
<td>dyn x s/cm⁵</td>
</tr>
<tr>
<td>TVR</td>
<td>Total vascular resistance</td>
<td>79.96 x ART M / C.O.</td>
<td>dyn x s/cm⁵</td>
</tr>
</tbody>
</table>
Oxygenation and ventilation parameters

The Cockpit uses the following parameter values for the oxygenation and ventilation calculations. All of these calculations are monitored parameter values except for PaO2, PaCO2, Hgb, and SaO2 which are lab values.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Available units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hgb</td>
<td>Hemoglobin concentration</td>
<td>g/dL</td>
</tr>
<tr>
<td>FiO2, FiO2</td>
<td>Inspired oxygen</td>
<td>%</td>
</tr>
<tr>
<td>PaCO2</td>
<td>Arterial CO2 partial pressure</td>
<td>mmHg</td>
</tr>
<tr>
<td>PaO2</td>
<td>Arterial oxygen partial pressure</td>
<td>mmHg</td>
</tr>
<tr>
<td>Pplat, Pplat</td>
<td>Pause (plateau) pressure</td>
<td>cmH2, mbar</td>
</tr>
<tr>
<td>Pb</td>
<td>Barometric pressure</td>
<td>mmHg, kPa</td>
</tr>
<tr>
<td>PeCO2</td>
<td>Mixed expired CO2 partial pressure</td>
<td>mmHg</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive end expiratory pressure</td>
<td>cmH2, mbar</td>
</tr>
<tr>
<td>PIP</td>
<td>Peak inspiratory pressure</td>
<td>cmH2, mbar</td>
</tr>
<tr>
<td>RRc, RR, RRi, RR</td>
<td>Respiratory rate</td>
<td>/min</td>
</tr>
<tr>
<td>SaO2</td>
<td>Arterial oxygen saturation</td>
<td>%</td>
</tr>
<tr>
<td>SvO2</td>
<td>Venous oxygen saturation</td>
<td>%</td>
</tr>
<tr>
<td>VTe / VTe</td>
<td>Expired tidal volume</td>
<td>mL, L</td>
</tr>
</tbody>
</table>
The Cockpit uses the values in the preceding table, the lab values, and the BSA value to calculate the following derived oxygenation and ventilation parameter values.

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Derivation</th>
<th>Available units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(a-v)O2</td>
<td>Arterio-venous oxygen difference</td>
<td>CaO2 – CvO2</td>
<td>mL/dL</td>
</tr>
<tr>
<td>CaO2</td>
<td>Arterial oxygen content</td>
<td>0.0134 x Hgb x SaO2</td>
<td>mL/dL</td>
</tr>
<tr>
<td>Cdyn</td>
<td>Dynamic compliance</td>
<td>VTe / (PIP – PEEP)</td>
<td>mL/cmH2</td>
</tr>
<tr>
<td>Cs</td>
<td>Static lung compliance</td>
<td>VTe / (Pplat – PEEP) or VTe / (Pplat – PEEP)</td>
<td>mL/cmH2</td>
</tr>
<tr>
<td>CvO2</td>
<td>Venous oxygen content</td>
<td>0.0134 x Hgb x SvO2</td>
<td>mL/dL</td>
</tr>
<tr>
<td>DO2</td>
<td>Oxygen availability, delivery, or transport</td>
<td>10 x CaO2 x C.O.</td>
<td>mL/min</td>
</tr>
<tr>
<td>DO2i</td>
<td>Oxygen availability (or delivery) index</td>
<td>10 x CaO2 x CI DO2 / BSA</td>
<td>mL/min/m²</td>
</tr>
<tr>
<td>MValv</td>
<td>Alveolar minute volume</td>
<td>(VTe – TVd phy) x RR</td>
<td>mL/min</td>
</tr>
<tr>
<td>MVe</td>
<td>Expired minute volume</td>
<td>(VTe x RR) / 1000</td>
<td>L/min</td>
</tr>
<tr>
<td>MV/C.O.</td>
<td>Ventilation cardiac output ratio</td>
<td>MValv / C.O.</td>
<td>No units</td>
</tr>
<tr>
<td>O2ER</td>
<td>Oxygen extraction ratio</td>
<td>(CaO2 – CvO2) / CaO2</td>
<td>No units</td>
</tr>
<tr>
<td>P(A-a)O2</td>
<td>Alveolar-arterial oxygen difference</td>
<td>iO2 x (Pb –47) – PaCO2 – PaO2 iO2 / 100 x (Pb-47) – PaCO2 – PaO2</td>
<td>mmHg</td>
</tr>
<tr>
<td>Qs/Qt</td>
<td>Intrapulmonary right-left shunt (percentage shunt)</td>
<td>Hgb x 1.34 + 0.0031 x PAAo2 – CaO2 Hgb x 1.34 + 0.0031 x PaO2 – CvO2 × 100</td>
<td>%</td>
</tr>
<tr>
<td>TVd phy</td>
<td>Tidal volume dead space (physiological)</td>
<td>VTe x (1 – PeCO2 / PaCO2)</td>
<td>mL</td>
</tr>
<tr>
<td>TVd/TV phy</td>
<td>Ratio of tidal volume dead space to tidal volume dead space (physiological)</td>
<td>TVd phy / VTe</td>
<td>No units</td>
</tr>
<tr>
<td>VO2</td>
<td>Oxygen consumption</td>
<td>10 x C(a-v)O2 x C.O.</td>
<td>mL/min</td>
</tr>
<tr>
<td>VO2i</td>
<td>Oxygen consumption index</td>
<td>10 x C(a-v)O2 x CI VO2 / BSA</td>
<td>mL/min/m²</td>
</tr>
</tbody>
</table>

NOTE: When multiple sources are available, the RR order of priority is RR, RRc, RRi.
Drug calculations

The Cockpit calculates the infusion rates of up to 44 drugs and displays titration tables. 40 of these drugs are pre-configured and four can be customized for a specific patient session. Information pertaining to patient-specific drugs is automatically deleted when you discharge the patient.

Data pertaining to default drugs is not deleted when a patient is discharged. For more information on how to create a customized drug list, see page 154.

Accessing the drug calculation functions

The following diagram shows the Drug calculation page where you perform drug dosage calculations. Once you enter the required information, a titration table with calculated dose and rate values appears.

A Drug dosage tab
B Select drug list arrow button
C Drug calculation tab
D Setup button for customizing the drug list (see page 154)
E Drug infusion parameter list
F Buttons for entering values

Accessing the drug calculations

1 Select the Procedures... button from the main menu bar.
2 Select the Drug dosage tab (A), if not already selected.
3 Select the Drug calculation tab (C), if not already selected.
Performing drug calculations

You can either select drugs from a pre-configured drug list (see page 154) or enter drugs manually to compute the desired dose and rate values and display them on the titration table.

To perform a drug calculation

In the following steps, the letters in parentheses correspond to the diagram for the Drug calculation page (see page 153).

1. Access the Drug calculation page (see page 153).
2. Select the arrow key (B) to activate the drug list containing pre-configured drugs.
3. Select the desired drug. The pre-configured values for amount, dose, and units are assigned to the drug infusion parameter list (E).
4. Add the other infusion parameters such as Rate by selecting the corresponding button and entering the values on the keypad.
5. Select Enter on the keypad to confirm your selection.

The titration table appears once you have entered the necessary information. The blue entry in the titration table corresponds to the entered value. The titration table can accommodate up to 20 settings which are centered around the calculated value.

Customized drug list

Customizing a drug list requires a clinical password. The drug list contains up to 40 drugs with the following pre-configured settings: the name, amount, volume, dose, and unit of measure. Once configured, a drug and its settings are stored as defaults and become available for selection in the Drug calculation page (see page 153).

The drug list also contains four ‘untitled’ drugs which are available if the pre-configured drugs do not meet the current drug calculation needs. These drugs are placeholders for generic drug dosage calculations.
To customize the drug list

1. Select the Procedures... button on the main menu bar.
2. Select the Drug dosage > Setup tabs.
3. Enter the password on the keypad.
4. Select Enter to display the Setup page.
5. Use the arrow in the Select drug field (B) to activate a list of existing drug names. Select an existing drug name for editing or an 'Untitled' entry for adding a new drug name. The selected drug is assigned to the Edit drug name field (C).
6. Select the pencil symbol next to the Edit drug name field (C) to activate an on-screen keyboard.
7. Edit or enter a drug name using the onscreen keyboard. A maximum of 25 alpha-numeric characters are available.
8. Select the Enter button on the keyboard.
9. Select the Amount button (E) to activate a pop-up with a keypad for adding the amount. Use the arrow symbol to activate a list of assigned units of measure.
10. Select the Enter button. The amount is assigned to the Amount field (E). The unit is assigned to the Dose units field (G).
11. Select the Volume button (F) to activate a pop-up with a keypad for adding the volume. Use the arrow symbol to activate a list of assigned units of measure.
12. Select the Enter button. The volume is assigned to the Volume field (F). The unit is assigned to the Dose units field (G).
13. Select the Save drug button (H) to save all of the drug and all of its attributes.

Customizing the drug list

Accessing the Drug dosage > Setup page requires a password. In the following steps, the letters in parentheses correspond to the diagram for the Drug dosage > Setup page.
Calculation

Drug calculator equations

The following table lists the variables and equations used to perform drug rate calculations.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount</td>
<td>The weight of the drug</td>
<td>Concentration x volume</td>
</tr>
<tr>
<td>Volume</td>
<td>The volume in which the drug is dissolved</td>
<td>Drug amount / concentration</td>
</tr>
<tr>
<td>Concentration</td>
<td>Drug quantity / solution volume</td>
<td>Drug amount / volume</td>
</tr>
<tr>
<td>Rate</td>
<td>Infused volume per unit of time</td>
<td>Dose / concentration</td>
</tr>
<tr>
<td>Duration</td>
<td>The time over which the infusion is administered</td>
<td>User-selectable</td>
</tr>
<tr>
<td>Dose</td>
<td>The amount of a drug the physician prescribes, standardized by weight and time</td>
<td>Rate x concentration or Rate x concentration / weight</td>
</tr>
<tr>
<td>Total dose</td>
<td>Total dose over duration</td>
<td>Dose x duration</td>
</tr>
<tr>
<td>Total volume</td>
<td>Total volume over duration</td>
<td>Rate x duration</td>
</tr>
</tbody>
</table>

The following table lists the available ranges for each category on the Drug calculation page.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily weight</td>
<td>0.1 to 350 kg (adult, pediatric)</td>
</tr>
<tr>
<td></td>
<td>1 to 10000 g (neonate)</td>
</tr>
<tr>
<td>Amount</td>
<td>0.01 to 100,000,000,000 micrograms (µg), m units, mEq, mmol</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000 milligrams (mg), units, mol</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000 grams (g), k units</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100 M units</td>
</tr>
<tr>
<td>Volume</td>
<td>0.01 to 10,000 mL</td>
</tr>
<tr>
<td>Concentration</td>
<td>0.01 to100,000,000,000 µg/mL, m units/mL, mEq/mL, mmol/mL</td>
</tr>
<tr>
<td></td>
<td>0.01 to100,000,000 mg/mL, units/mL, mol/mL</td>
</tr>
<tr>
<td></td>
<td>0.01 to100,000 g/mL, k units/mL</td>
</tr>
<tr>
<td></td>
<td>0.01 to100 M units/mL</td>
</tr>
<tr>
<td>Rate</td>
<td>0.01 to 10,000 mL/h</td>
</tr>
<tr>
<td>Duration</td>
<td>0.01 to 10,000 h</td>
</tr>
</tbody>
</table>
Calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (per hour)</td>
<td>0.01 to 100,000,000,000 µg/h, mEq/h, m units/h, mmol/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000 mg/h, units/h, mol/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 10,000 g/h, k units/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100 M units/h</td>
</tr>
<tr>
<td>Dose (per minute)</td>
<td>0.01 to 1,666,666,666.66 µg/min, mEq/min, m units/min, mmol/min</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666,666,666 mg/min, units/min, mol/min</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666.66 g/min, k units/min</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1.66 M units/min</td>
</tr>
<tr>
<td>Dose/Daily weight</td>
<td>Adult and pediatric:</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000,000,000 µg/kg/h, m units/kg/h, mmol/kg/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000 mg/kg/h, units/kg/h, mol/kg/min or h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000 g/kg/h, k units/kg/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100 M units/kg/h</td>
</tr>
<tr>
<td></td>
<td>Neonatal:</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000,000,000 µg/g/h, m units/g/h, mEq/g/h, mmol/g/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000 mg/g/h, units/g/h, mol/g/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000 g/g/h, k units/g/h</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100 M units/g/h</td>
</tr>
<tr>
<td>Dose/Daily weight</td>
<td>Adult, pediatric, and neonatal:</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666,666,666.66 µg/kg/min, mEq/kg/min, m units/kg/min, mmol/min</td>
</tr>
<tr>
<td></td>
<td>Adult, pediatric,</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666,666,666.66 µg/g/min, mEq/g/min, m units/g/min, mmol/min</td>
</tr>
<tr>
<td></td>
<td>Neonatal:</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666,666.66 mg/g/min, units/g/min</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1,666.66 g/kg/min, k units/kg/min</td>
</tr>
<tr>
<td></td>
<td>0.01 to 1.66 M units/kg/min</td>
</tr>
<tr>
<td>Total dose</td>
<td>0.01 to 100,000,000,000 µg, m units, mEq, mmol</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000,000 mg, units, mol</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100,000 g, k units</td>
</tr>
<tr>
<td></td>
<td>0.01 to 100 M units</td>
</tr>
<tr>
<td>Total volume</td>
<td>0.01 to 10,000 mL</td>
</tr>
</tbody>
</table>
Trends/data dialog windows

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>160</td>
</tr>
<tr>
<td>Trending behavior</td>
<td>160</td>
</tr>
<tr>
<td>Supported parameters</td>
<td>160</td>
</tr>
<tr>
<td>Special characters and symbols</td>
<td>162</td>
</tr>
<tr>
<td>Trend graphs</td>
<td>162</td>
</tr>
<tr>
<td>The layout of the trend graphs pages</td>
<td>163</td>
</tr>
<tr>
<td>Interacting with the trend graphs pages</td>
<td>164</td>
</tr>
<tr>
<td>Configuring the parameter content of the trend graphs</td>
<td>164</td>
</tr>
<tr>
<td>Navigating through the trend graphs</td>
<td>165</td>
</tr>
<tr>
<td>Using the cursor</td>
<td>165</td>
</tr>
<tr>
<td>Changing trend scales</td>
<td>166</td>
</tr>
<tr>
<td>General trend graph display features</td>
<td>166</td>
</tr>
<tr>
<td>Printing a graphical trend report</td>
<td>166</td>
</tr>
<tr>
<td>Recruitment page</td>
<td>167</td>
</tr>
<tr>
<td>The layout of the recruitment page</td>
<td>167</td>
</tr>
<tr>
<td>Interacting with the Recruitment page</td>
<td>168</td>
</tr>
<tr>
<td>Configuring the parameter content</td>
<td>168</td>
</tr>
<tr>
<td>Using the cursors</td>
<td>169</td>
</tr>
<tr>
<td>Freezing the display</td>
<td>169</td>
</tr>
<tr>
<td>Printing a recruitment trend graph report</td>
<td>170</td>
</tr>
<tr>
<td>Trend table</td>
<td>170</td>
</tr>
<tr>
<td>The layout of the trend table</td>
<td>171</td>
</tr>
<tr>
<td>Interacting with the trend table</td>
<td>172</td>
</tr>
<tr>
<td>Tabular trends in split screen mode</td>
<td>172</td>
</tr>
<tr>
<td>Navigating through the trend table</td>
<td>172</td>
</tr>
<tr>
<td>Configuring the trend table</td>
<td>172</td>
</tr>
<tr>
<td>Configuring the parameter content of the trend table</td>
<td>173</td>
</tr>
<tr>
<td>Printing a tabular trend report</td>
<td>174</td>
</tr>
<tr>
<td>Mini-trends</td>
<td>174</td>
</tr>
<tr>
<td>Configuring the mini-trend display</td>
<td>174</td>
</tr>
</tbody>
</table>

Data review pages | 175 |

Reports tab | 177 |

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Overview

The Trends/Data dialog window provides numerous trend, data review, and report pages.

To access Trends/Data dialog window

1. Select the Trends/Data... button on the main menu bar.
2. Select one of the following tabs to access the desired page:
 - Trends – accesses the graphical and tabular trends and associated functions.
 - ECG – displays all connected ECG leads (see page 197) and ST complexes (see page 210).
 - Ventilator – displays respiratory/ventilation loops (see page 383). When a Perseus A500 is connected, the name of this tab changes to Anesthesia/Ventilation to display anesthesia/ventilation parameters.
 - Hemo – accesses the hemodynamic calculations and results data (see page 175).
 - Labs – accesses the lab results (see page 175).
 - Reports – accesses the tabs for configuring and requesting reports (see "Printing reports" on page 444).

Trending behavior

The Cockpit stores up to 96 hours of continuous and discrete trend values. Trend data are sampled every 30 seconds at the Cockpit where the trend display is updated automatically. Trend updates at the Cockpit are reflected on connected network devices every 60 seconds.

You can view trend data in graphical or tabular format. You can also customize the trend display by selecting which parameters are displayed and by selecting the time period of the trended parameters.

The Cockpit maintains one trend database per patient. If you dock an M540 that was previously docked on another Cockpit, the trend data from the previous Cockpit are transferred over the network to the new Cockpit, provided a patient ID was entered.

If you undock an M540, trending is suspended on the Cockpit but the trend data remain intact. When you redock the M540, any new trend data collected during patient transport are transferred to the Cockpit. Transferring the trend data may take a brief moment during which time trends are not accessible.

NOTE

After docking/undocking the M540, one minute of trend data collected during this transition period may not be displayed at the ICS equipped with software version VG1. However, these trends are visible at the Cockpit.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 trend functions.

Supported parameters

A trended parameter can either be represented in tabular or graphical form. The following sections explain how the different parameter groups are plotted on the graphical trends.
Continuous parameters

The following parameters are continuously trended and appear as a single, continuous line, or as a band on the graphical trends (see page 29 for definitions of abbreviations):

- ECG parameters: HR, %PACED, ST, PVC/min
- Respiratory parameters: RRI
- IBP parameters: for a complete list of invasive blood pressure parameters, see page 280
- CO2 parameters: etCO2, inCO2, RRC
- C.O. parameter: Tblood
- Temperature parameters: Ta, Tb, ΔT, T1a, T1b, and ΔT1
- Continuous cardiac output parameters using the device connectivity option: SvO2, Tblood, CCO, CCI, VO2, DO2, SaO2, SVR, SVRI, EDV, EDVI, ESV, ESVI, EF, SV, SVI, SVV
- Medibus X-compatible devices: Dräger Evita V500, Dräger Babylog VN500, Savina 300, Carina, Dräger Evita V300, Oxylog 3000+, Infinity Perseus A500, Zeus IE, Primus family, Apollo: for a list of trended parameters, see page 350.
- Medibus-compatible devices: Dräger Evita 2D, Dräger Evita 4, Dräger Evita XL, for a list of trended parameters, see page 380.
- Maquet SERVO-i: for a list of trended parameters, see page 368.
- BIS VISTA – BIS, EMG, SqI, BSR, PWR, SEF, BCT
- NMT – T NMT
- Pulse oximetry parameters with Masimo SET: SpO2, PLS, PI
- Pulse oximetry parameters with Masimo rainbow SET: SpO2, PLS, PI, SpHb, SpHbv, SpOC, PVI, SpCO, SpMet
- Pulse oximetry parameters with Nellcor OxiMax MCable: SpO2, PLS

NOTE

The color of the SpO2 graphical trend changes based on how the current value compares to the lower SpO2 alarm limit. The color changes from green to yellow to orange to red as the SpO2 trend value progresses further below the lower alarm limit.

Discrete parameters

The following discrete parameters are plotted uniquely in graphical trends:

- NIBP consists of a line with three dots representing the diastolic, mean, and systolic values
- PWP and C.O. appear as a ‘+’ symbol
- Lab data are represented as a ‘+’ symbol and include time stamps
- NMT parameters: Single, PTC, TOF Ratio or TOF Cnt
Trends/data dialog windows

Special characters and symbols

In addition to parameters, certain conditions, such as disconnected leads, artifact, and so on, are also identified on graphical and tabular trends.

<table>
<thead>
<tr>
<th>Event</th>
<th>Character/symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asystole</td>
<td>ASY</td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>VF</td>
</tr>
<tr>
<td>Apnea</td>
<td>Apnea</td>
</tr>
<tr>
<td>No parameter values are available</td>
<td>** **</td>
</tr>
<tr>
<td>Out of range value</td>
<td>+++ (high) - - - (low)</td>
</tr>
<tr>
<td>Relearning</td>
<td>LEARN</td>
</tr>
<tr>
<td>Interruption in power or monitor is placed into standby</td>
<td>No values</td>
</tr>
</tbody>
</table>

Trend graphs

A trend graph plots the behavior of parameters over time. Trend graphs are continuously updated, with the most recent data appearing on the right side of the screen. The Trends/Data dialog consists of the following trends graphs pages:

- **Graph** page
- **Graph vitals** page
- **Ventilation / Anesthesia** page

All trend graphs pages look almost identical. In the Graph and the Ventilation / Anesthesia pages you can change the parameter content.

However, the Graph vitals is a pre-configured display consisting of the following set of commonly trended parameters which are displayed in four graphical windows:

<table>
<thead>
<tr>
<th>Window 1 (top)</th>
<th>Window 2</th>
<th>Window 3</th>
<th>Window 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR, SpO₂, and RRI</td>
<td>NIBP</td>
<td>Ta, Tb</td>
<td>CO₂</td>
</tr>
</tbody>
</table>

To access the trend graph pages

1. Select the Trends/ Data... button on the main menu bar.
2. Select the Trends tab (if not already selected).
3. Select one of the following trend graph pages:
 - **Graph** tab to view general trends
 - **Graph vitals** tab to view a set of pre-configured parameters
 - **Ventilation / Anesthesia** tab to view ventilation/anesthesia-related parameters
 - **BIS** tab to view BIS trends
The layout of the trend graphs pages

The trends graph pages share a common layout. They contain up to four separate trend windows. Each trend window can accommodate the trend graphs of up to five selectable parameters. For each parameter, the trend panel also displays trend scales, units of measure, and the parameter label.

The following diagram shows the layout of the trend pages.

A **Trends** tab

B **Graph** tab – accesses graphical trends

C **Table** tab – accesses the tabular trends

D **Graph vitals** tab – accesses the graphical trends of a set of pre-configured trend parameters.

E **Ventilation / Anesthesia** tab – accesses the graphical trends of a set of pre-configured trend parameters for critical care or anesthesia ventilation.

F **BIS** tab – accesses the graphical trends for the BIS VISTA device.

G Trend setup symbol for selecting up to five parameters

H Scroll keys

I **Print** button

J **Grids** on/off button

K **Graphs** button

L **View** button for selecting how much time is displayed

M Graphical trend panels

Directly below the trend windows is a time scale that correlates to the selected time interval.
Interacting with the trend graphs pages

You can interact with the trend graph pages by manipulating several display functions.

Configuring the parameter content of the trend graphs

Except for the Graph vitals page whose parameter assignments are fixed, you can customize the parameter content for the Graph and the Ventilation and Anesthesia trend graph pages.

The following diagram depicts the setup window for customizing the parameter content of each trend graph page.

A Display filter button
B Button that closes the setup window
C Group of parameter buttons entitled Medibus X for selecting parameters originating from Medibus X devices using the device connectivity option (for a list of supported Medibus X devices, see page 349).
D OK button
E Cancel button
F Clear all button – deselects any buttons that are currently selected
G Group of parameter buttons entitled Other for selecting miscellaneous parameters such as SpO2, temperature, and so on.
H Group of parameter buttons entitled CO2 for selecting CO2-related parameters.
I Group of parameter buttons entitled More devices for selecting parameters such as NMT, BIS, and CCO. These parameters originate from external devices using the device connectivity option.
J Group of parameter buttons entitled ECG for selecting ECG-related parameters.
K Group of parameter buttons entitled Pressures for selecting pressure-related parameters.
L Group of parameter buttons entitled Vent devices for selecting ventilation-related parameters originating from Medibus devices using the device connectivity option.
To modify the parameter selection for a trend graph page

In the following steps, the letters in parentheses refer to the diagram of the trend setup page (see page 164).

1. Access the Graph or the Ventilation / Anesthesia tab (see page 160).
2. Select the trend setup symbol next to a trend graph panel in the selected trend page to activate the Setup dialog window.
3. Use the display filter button (A) to toggle between the filtered or unfiltered display. When the button is on a light green background only the buttons of the connected parameters are displayed. When the symbol appears on a dark green background the buttons of all parameters, whether monitored or not, are displayed.
4. Select the parameters you wish to display in the selected trend window. You can select up to five parameters for each trend panel.
5. Select the OK button (D) to confirm the selection and reconfigure the trend page. Select the Cancel button (E) to exit the screen without accepting the changes.
6. Repeat steps 2 to 5 to configure the parameter setup for other trend graph panels.

Navigating through the trend graphs

The trend database for a patient may contain more data than can be displayed on a single trend graphs page.

One way to navigate through the entire trend data is by using the scroll bar. It is located at the bottom of the trend graphs pages. The scroll bar consists of single and double arrows and a moveable navigation bar. The double arrows scroll through larger portions than the single arrows. If more trend data are stored than are currently displayed, you can also drag the navigation bar located between the arrows to the desired location. As you navigate through the trend data, the time line right above the scroll bar changes to display the time and date corresponding to the displayed graphs.

Using the cursor

The cursor is a vertical line that pinpoints a specific time for all parameters. It extends through all trend graphs. Whenever you display the cursor, popups appear next to each trend window. They display the parameter labels, units of measure and the parameter values that correspond to the position of the cursor. The top popup displays the exact time and date the cursor pinpoints on the graphs.

To display the cursor

1. Access the desired trend graphs page (see page 162).
2. Touch a point on the page to display the cursor.
3. Use the rotary knob to move the cursor to a specific point on the trend data.

To hide the cursor

The cursor and the associated popups disappear automatically after a brief time of no user interaction. You can also hide the cursor immediately as follows:

- Press the rotary knob.

NOTE

Buttons with ellipses such as More ventilation... or More gases... access additional parameters.
Changing trend scales

The trend scales appear to the left of each trended parameter. The scales can be changed at any time provided the trend cursor is not displayed. Hide the cursor by pressing the rotary knob before you change the trend scales.

To change the trend scales
1 Access the desired trend graphs page (see page 162).
2 Touch the trend scale value you wish to change. A trend scale window appears.
3 Select the buttons in the popup to adjust the upper and/or lower trend scale.
4 Use the rotary knob to dial to the desired setting.
5 Press the rotary knob to confirm your selection.

General trend graph display features

The following sections list the various ways available for customizing the content of the trend graphs pages. Refer to the diagram depicting the trend graph (see page 163) for the locations of the buttons used to perform the setup functions.

To access the general display features
1 Access the desired trend graphs page (see page 162).
2 Select the Grids on/off button (I) to display or hide the background grid.
3 Select the Graphs button (J) and use the rotary knob to select how many trend windows are displayed. You can select from 1 to 4 trend windows.
4 Use the View button (K) to select how much time is displayed on the Graph page. The available settings are: 1 h, 2 h, 4 h, 8 h, 12 h, 1 day, 2 day, 4 day.

Printing a graphical trend report

The content of a graphical trend report depends on the user setup (see page 164). The duration of a graphical trend report depends on the reports setup (see page 416).

To print a graphical trend report
1 Access the desired trend graph pages (see page 162).
2 Scroll to the desired trend data.
3 Select the Print button (G) – see page 163.

NOTE
If configured to appear on the main menu bar, a Trend graph report button is also accessible on the main menu bar. For more information, see page 398.

You can also request a graphical trend report from other pages, for details see page 444.

NOTE
You can also request a printout of the current trends display by selecting the Print screen button on the main menu bar. The print screen prints on the connected laser printer.
Recruitment page

The Recruitment page is a comprehensive trend page for visualizing information necessary to perform a recruitment maneuver. The page shows the effects on lung mechanics and hemodynamic parameters on a single, integrated display. The Recruitment page displays twelve minutes of data on three graphical trend panels simultaneously. The page is divided into three separate trend graph panels with the following initial default setup which is configurable:

- The top trend graph panel displays PIP, PEEP, ART M
- The middle trend graph panel displays VT, Cdyn,
- The bottom trend graph panel displays SpO2, etCO2

Each trend graph panel displays up to three parameters and associated values. With the cursor buttons you can reference separate data points on the graphs. The corresponding values are displayed next to the graphs. The current values for the selected trend parameters are always displayed across the top of the screen.

To access the recruitment page

1. Select the Procedures... button from the main menu bar.
2. Select the Recruitment tab.

The layout of the recruitment page

The following diagram depicts the Recruitment page.

A Recruitment tab
B Button that closes the page
C Trend setup symbols for selecting up to three parameters per panel
D Print button
E Freeze button for freezing the trend display
F Cursor button for marking the end point
G Cursor button for marking the initial point
H Graphical trend parameter windows
I Current parameter values originating from the device (parameter value, parameter label)
Interacting with the Recruitment page

To configure the parameter content

1. Select the Procedures... button from the main menu bar.
2. Select the Recruitment tab.
3. Select the trend setup symbol next to a trend graph panel.
4. Use the display filter button to toggle between the filtered or unfiltered display. When the button is on a light green background only the buttons of the connected parameters are displayed. When the symbol appears on a dark green background the buttons of all parameters, whether monitored or not, are displayed.
5. Select the parameters you wish to display in the selected trend window. You can select up to three parameters for each trend panel.
6. Select the OK button to confirm the selection. Select the Cancel button to exit the screen without accepting the changes.
7. Select the Clear all button to deselect any buttons that are currently selected.
8. Repeat steps 3 to 6 to configure the parameter setup for other trend graph panels.

NOTE
Buttons with ellipses such as More ventilation... or More gases... access additional parameters.
Using the cursors

The Recruitment page has two cursors for marking a portion of the trend graphs for closer analysis. The letters in parentheses refer to the diagram on page 167. Whenever you use the cursors, the screen freezes.

To set the cursors

1. Select the Procedures... button from the main menu bar.
2. Select the Recruitment tab.
3. Select the left cursor button (G).
4. Use the rotary knob to move the orange cursor to the desired place on the trend graphs to mark the initial point.
5. Press the rotary knob to set the initial point.
6. Select the right cursor button (F).
7. Use the rotary knob to move the orange cursor to the desired place on the trend graphs to mark the end point.
8. Press the rotary knob to set the end point.

The trend parameter windows to the right of the trend graphs show the following information for each parameter corresponding to the cursor positions:
- \(\Delta \) value – time elapsed between the two cursors
- Initial value
- End value

In addition to values, symbols appear next to the values to indicate how the parameters inside the cursors have trended:
- An equal (=) sign means that the values have remained the same
- An arrow pointing up indicates that the values are trending higher than the first cursor position.
- An arrow pointing down indicates that the values are trending lower than the first cursor position.

Freezing the display

You can temporarily stop the Recruitment page from updating by freezing the screen.

To freeze the display

1. Select the Procedures... button from the main menu bar.
2. Select the Recruitment tab.
3. Select the Freeze button (E).

To "unfreeze" the display

- Select the Freeze button (E) again.

The screen is updated with the most current data.
Trends/data dialog windows

Printing a recruitment trend graph report

A recruitment trend graph report contains the initial and end cursor values and the Δ value for each parameter. You can only print a recruitment trend graph report after you set the cursors. Otherwise the Print button remains grayed out and cannot be selected.

To print a recruitment trend graph report

1. Select the Procedures... button from the main menu bar.
2. Select the Recruitment tab.
3. Set both cursor buttons (see page 169).
4. Select the Print button.

Trend table

The trend table displays trend data in data columns. Trend data are updated according to the selected time scale. For example, if the current time scale is 15 minutes, the trend display is updated every 15 minutes. A time stamp above each column marks the interval during which the data in that column was collected. The displayed value is the last acquired value during that interval. The column on the right side is reserved for the most recent data. Certain parameters and special conditions, such as artifact, are represented in unique ways (see page 160).

To access the trend table

1. Select the Trends/Data... button on the main menu bar.
2. Select the Trends tab (if not already selected).
3. Select the Table tab (if not already selected).
The layout of the trend table

The following diagram shows the trend table page. You can configure the tabular trend page which also determines how the information appears on the tabular trend report.

- **A** Trends tab
- **B** Parameter label column
- **C** Parameter columns
- **D** Latest trend data
- **E** Graph tab (see page 163)
- **F** Table tab
- **G** Graph vitals tab (see page 162)
- **H** Anesthesia workstation tab accesses the tabular trends of a set of pre-configured trend parameters for critical care or anesthesia ventilation.
- **I** BIS tab for accessing the tabular BIS trends
- **J** Scroll keys and scroll bar
- **K** Print button
- **L** Setup button for selecting which parameters are displayed and in what priority
- **M** View button for selecting how much time is displayed
Interacting with the trend table

You can interact with the trend screen by manipulating several display functions.

Tabular trends in split screen mode

You can display the tabular trends on the main screen by activating the split screen mode for tabular trends in the Auto view page.

When this split screen mode is activated, a tabular trend panel occupies the left side of the monitoring area. You can perform the same setup and viewing functions as for the regular tabular trends.

To activate split screen mode
1. Select the System setup... button from the main menu bar.
2. Select the Auto view tab.
3. Select the button next to the Split screen menu selection.
4. Dial to the Trend table selection using the rotary knob.

The layout of the monitoring area changes and displays the tabular trend panel.

Navigating through the trend table

The trend data base for a patient may contain more data than can be displayed on the trend table. You can navigate through the entire trend data using the scroll bars. They are located at the bottom and along the right side of the trend table.

The scroll bars consists of single and double arrows and a moveable navigation bar. The double arrows scroll through larger portions than the single arrows. If more trend data are stored than is currently displayed, use the rotary knob or drag the navigation bar located between the arrow keys to the desired location.

Configuring the trend table

The following sections list the various methods for customizing the content of the trend table. Refer to the diagram depicting the Table (see page 170) for the locations of the buttons used to perform the setup functions.

To change the time intervals
1. Access the Trends > Table page (see page 170).
2. Use the View button (L) to change the time intervals of the trend columns. The available settings are: 1 min, 5 min, 10 min, 15 min (default), 30 min, 1 h.
Configuring the parameter content of the trend table

The following diagram depicts the setup page for modifying the parameter content of the trend table.

A Group of parameter buttons entitled ECG for selecting ECG-related parameters

B Group of parameter buttons entitled Pressure for selecting pressure-related parameters

C Group of parameter buttons entitled Vent devices for selecting ventilation-related parameters

D Group of parameter buttons entitled Medibus.X for selecting Medibus X parameters available using the device connectivity option

E OK button

F Cancel button

G Clear all button – deselects any buttons that are currently selected

H Select all button – selects all buttons at once

I Auto-sort button

J Window for sorting the parameters automatically

K Group of parameter buttons entitled Other for selecting miscellaneous parameters such as SpO2, temperature, and so on

L Group of parameter buttons entitled CO2 for selecting CO2-related parameters

M Group of parameter buttons entitled More devices for selecting additional parameters

To modify the parameter selection for a trend table

1. Access the Trends > Table page (see page 170).

2. Select the trend setup symbol at the bottom of the trend table.

3. Use the display filter button (A) to toggle between the filtered or unfiltered display. When the button is on a light green background only the buttons of the connected parameters are displayed. When the symbol appears on a dark green background, the buttons of all parameters, whether monitored or not, are displayed.

4. Select the Auto-sort button to sort the parameter list according to the parameter priority list in the Auto view setup page (see page 58).

 or

 Select the parameters you wish to display in the trend table.

5. Select the OK button (D) to confirm the selection and reconfigure the trend table. Select the Cancel button (E) to exit the screen without accepting the changes.

NOTE

Buttons with ellipses such as More ventilation... or More gases... access additional parameters.
Printing a tabular trend report

The content of a tabular trend report depends on the system setup (see page 413).

To print a tabular trend report

1. Access the Trends > Table page (see page 162).
2. Scroll to the desired trend data.
3. Select the Print button (J).

You can also request a tabular trend report from other pages, for details see page 444.

NOTE
If configured to appear on the main menu bar, a Trend table report button is also accessible on the main menu bar. For more information, see page 398.

Mini-trends

When the mini-trend display is activated (see page 392), a panel appears to the left of the monitoring area of the main screen. The colors of the mini-trend correspond to the selected parameter color. The mini-trend display is updated every 5 seconds.

NOTE
Although CCO, CCI, and Tblood are trended, there are no CCO parameters included in the mini-trend display.

NOTE
If you activate split screen mode (see page 393), the mini display is not affected and shifts to the right along with the real-time parameter display.

Configuring the mini-trend display

In the System setup dialog, you can activate or de-activate the mini-trend display and select the mini-trend display duration. You can also select how the NIBP parameter appears in the mini-trends.

NOTE
If the mini-trends are displayed, you can change the mini-trend scale and the duration by touching the displayed values. A popup appears allowing you to change these settings directly.

To configure the mini-trend display

1. Select the System setup... button on the main menu bar to activate the System setup dialog.
2. Select the Auto view tab along the right side of the System setup dialog.
3. Select the button next to Mini trends.
4. Select one of the following settings: Off (deactivates the mini-trend display), 10 min, 15 min, 20 min, 30 min (default), 45 min, 1 h, 90 min, 2 h, 4 h.
5. Select the button next to NIBP trend.
6. Use the rotary knob to select either Graphic or Numeric. The selected setting determines how the parameter is represented on the mini-trend display.
Data review pages

In addition to trend data, the **Trends/Data dialog** window also provides several data review pages which are outlined in the following table. Some of these review pages are also available under different tabs.

To access the data reviews

1. Select the **Trends/Data**... button on the main menu bar.
2. Select one of the following tabs to access the desired data:
 - **Trends**, **ECG**, **Ventilator** or **Anesthesia/Ventilation**, **Hemo**, **Labs**, **Reports**

<table>
<thead>
<tr>
<th>Data review page</th>
<th>Description</th>
<th>Available functions</th>
</tr>
</thead>
</table>
| **Show all** page under the **ECG** tab | This page shows the waveforms of all connected leads along with the scale and the waveform label. | – **Print** button for requesting a Rest ECG report
– **Print** button for requesting an ECG report |
| **ST complex** page under the **ECG** tab | This page shows the ST complexes. The number of displayed ST complexes depends on the connected lead wire set. | – **Print** button for generating an ST report
– **ST** button
– **Reference** on/off button for displaying reference complexes
– **ISO** button
– **Relearn** button |

NOTE
The horizontal tab **Ventilator** changes to **Anesthesia/Ventilation** when a A500 is connected.
Trends/data dialog windows

<table>
<thead>
<tr>
<th>Data review page</th>
<th>Description</th>
<th>Available functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator or Anesthesia/Ventilation > Show all page</td>
<td></td>
<td>Data review page displaying respiration, anesthesia or ventilation parameter information.</td>
</tr>
</tbody>
</table>
| | – When an A500 anesthesia device is connected, the tab name is labeled *Anesthesia/Ventilation*. The page displays current measurement values for ventilation and anesthesia parameters and the current consumption.
 – When a V500 ventilator is connected, the tab name is labeled *Ventilator*. The page displays current ventilation values and tabs for PV/FV loops. | |
| **Hemo > Show all page** | Displays the currently monitored hemodynamic parameters; includes parameters available using the device connectivity option. | **Data review page displaying the currently monitored hemodynamic parameter values.** |
| **Hemo > Calc Results page** | Displays calculation results. The same page is also available under the *Calculations* tab (see page 147). | – **Setup** button for activating a popup window for selecting which parameters are included or excluded from the display. The parameters on the dark background are selected for display, the ones on a light background are not.
 – **Auto-sort** button for sorting the parameter list according to the parameter priority list in the *Auto view* page (see page 58). If you add parameters to the parameter priority list, you must order these parameters manually.
 – **Save** button for saving the selected calculation parameters. |
The Reports tab of the Trends/Data dialog window combines the various reports under one tab for easy access.

The Reports dialog window consists of the following pages:

- General reports
- OR report
- Setup

From the General reports and OR report pages you can request reports (for detailed information on how to request these reports, see “Printing reports” on page 444. The Setup page is for configuring the case summary report (see page 448 for details).
ECG, arrhythmia, and ST segment

Overview of ECG and heart rate monitoring .. 181
ECG signal processing and display ... 181
Supported parameters ... 181
ECG precautions ... 182
Connecting the 3-, 5-, 6-lead wire sets for ECG monitoring 183
Connecting the lead wire sets for 12-lead monitoring 184
Connecting the lead wires for neonatal monitoring 185
Patient preparation for ECG monitoring ... 186
Electrosurgery ... 186
ECG display .. 187
ECG parameter box .. 187
ECG waveforms ... 188
ECG colors ... 189
Electrode placement .. 190
Standard configuration, three electrodes (IEC/AHA) 190
Standard configuration, five electrodes (IEC/AHA) 190
Pacer configuration, five electrodes (IEC/AHA) 191
Standard configuration, six electrodes (IEC/AHA) 191
12-lead configuration, ten electrodes for 12-lead Rest ECG monitoring (AHA) .. 192
12-lead configuration, ten electrodes for 12-lead Rest ECG monitoring (IEC) .. 192
Accessing the ECG functions .. 193
ECG parameter setup functions .. 194
Monitoring paced patients ... 197
Pacemaker precautions ... 198
Pacer fusion mode ... 198
Device interference with pacemaker monitoring 199
Optimizing pacer processing ... 200
Arrhythmia monitoring overview ... 200
Selecting arrhythmia leads ... 201
Arrhythmia processing .. 202
Arrhythmia modes ... 202
Arrhythmia display ... 204
Combined heart rate/arrhythmia parameter box 205
Separate arrhythmia parameter box ... 205

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 179
ECG, arrhythmia, and ST segment

Accessing the arrhythmia functions 206
Arrhythmia parameter setup functions 206
Monitoring ST overview ... 207
Standard ST monitoring ... 207
TruST 12-lead monitoring ... 208
12-lead ST monitoring .. 208
Connecting lead wire sets for ST monitoring 208
ST display ... 209
Reviewing ST complexes .. 210
Reviewing all ST complexes 210
Zooming in on an ST complex 211
ST measuring points ... 212
Adjusting ST measuring points 212
ST reference .. 213
Saving ST reference points 213
ST alarm settings .. 214
Accessing the ST settings .. 214
ST setup functions ... 215
Learning/relearning QRS pattern 217
Manual relearning .. 217
Overview of ECG and heart rate monitoring

The M540 calculates and displays the heart rate, identifies paced beats, reports arrhythmia conditions, measures ST deviations, and relays these values to the Cockpit for display. ECG and heart rate monitoring is for adult, pediatric, and neonatal patients.

3-, 5-, 6-, and 10-lead wire sets are available for adult and pediatric ECG monitoring (including TruST). A neonatal ECG adapter cable is available for connecting individual ECG leads for neonatal monitoring.

Normal ECG monitoring (including 12-lead ECG monitoring) is not of diagnostic quality. The only report of diagnostic quality is an optional Rest ECG report which is generated from a 12-lead ECG. To generate such a report requires that the patient is admitted at the Infinity CentralStation and that the Rest ECG option is activated (see page 415 for setup information).

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 ECG functions.

The ECG monitoring functions are configurable in the ECG pages (see page 194).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11.

ECG signal processing and display

The M540 identifies QRS complexes of certain amplitudes and QRS widths for adult, pediatric, and neonatal patients (see the ECG section of the "Technical data" chapter in the M540 instructions for use for detailed parameter specifications). It calculates heart rates within a range of 15 beats to 300 beats per minute, using the R-R intervals of the last 10 seconds. This calculation excludes the two longest and the two shortest R-R intervals. The M540 averages the remaining intervals and displays the result as the current heart rate in the heart rate parameter box. For adult and pediatric patients, the QRS threshold is adjustable (see page 196).

During dual-channel processing, a weight is assigned to each channel depending on its level of artifact. The cleaner channel always receives the greater weight. When a channel exceeds a certain level of artifact, it is excluded from the composite signal, and the M540 shifts to single-channel processing. If both channels experience excessive artifact, an artifact message appears until at least one channel is sufficiently free of artifact.

During artifact, asterisks (* * *) replace the heart rate value. Once the artifact clears, QRS processing resumes without initiating a relearning phase.

Arrhythmia monitoring and the selected arrhythmia mode affect the display of the heart rate parameter box. For detailed information, see "Arrhythmia processing" on page 202.

Parameter-specific error messages are listed in the chapter "Problem solving" starting on page 455.

Supported parameters

- ECG: HR (heart rate), %PACED (paced beats)
- ST: STI, STII, STIII, STaVR, STaVL, STaVF, STV, STV+, STV1 to STV6, STVM, STCVM, STdV1, STdV3, STdV4, STdV6
- Arrhythmia: ARR (ASY, VF, ARTF, VTACH, RUN, AIVR, SVT, CPT, BGM, TACH, BRADY, Pause); see page 202 for a description of these arrhythmia modes and PVC/min

Except for asystole and ventricular fibrillation events, no other arrhythmia events appear in the trends of any ICS equipped with software version VG1.
ECG precautions

Refer to the following sections for general precautions:
- "Electrical safety" on page 14
- "Electrosurgery" on page 18
- "Defibrillator precautions" on page 18

WARNING
Do not select TruST leads for ECG signal processing. If the QRS morphology of a TruST lead differs from that of its equivalent conventional lead, always refer to the conventional lead.

WARNING
To prevent patient injury, always verify the timing of the QRS synchronization pulse before attempting cardioversion using the Infinity MCable – Analog/Sync.

WARNING
Do not rely solely on the ECG when monitoring seizure-prone patients. Electrical artifacts of non-cardiac origin, such as seizure, may prevent detection of certain arrhythmias.
Connecting the 3-, 5-, 6-lead wire sets for ECG monitoring

The ECG lead wire sets connect directly to the M540.

To connect the ECG lead wire sets
1. Insert the 3-, 5-, or 6-lead wire set (C) into the recessed ECG connector (B) on the side of the M540 that is closest to the non-invasive blood pressure connector (A).

 Orient the lead wire set (C) so the exposed pins face towards you as you push it firmly into the ECG connector.

 NOTE
 An ECG lead wire set can rest in the ECG connector of the M540 without actually being connected. Make sure that all ECG lead wire sets are pushed firmly into the ECG connector of the M540.

 Almost every MonoLead features a number on the lead wire set indicating how many leads connect. When connecting a MonoLead, make sure the number faces in the same direction as the M540 display.

2. Insert the spacer (D) to protect the unused ECG lead pins.

3. Connect the lead wires to the patient. For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.
Connecting the lead wire sets for 12-lead monitoring

The ECG lead wire sets connect directly to the M540.

To connect the ECG lead wire sets

1. Insert the 6-lead wire set (B) and the 4-lead wire set (C) into the recessed ECG connector (A) on the side of the M540.

 Orient lead wire sets (B and C) so the exposed pins face towards you as you push them firmly into the channel.

 NOTE
 An ECG lead wire set can rest in the ECG connector of the M540 without actually being connected. Make sure that all ECG lead wire sets are pushed firmly into the ECG connector of the M540.

 Almost every MonoLead features a number on the lead wire set indicating how many leads connect. When connecting a MonoLead, make sure the number faces in the same direction as the M540 display.

2. Connect the lead wires to the patient. For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.

 NOTE
 When using a 12-lead ECG wire set where the lead wires are coiled, it is recommended that the 6-lead wire set is coiled in the same direction as the 4-lead set to prevent artifact. For example, both lead wire sets are either coiled towards the patient or away from the patient.
Connecting the lead wires for neonatal monitoring

The ECG lead wire sets connect directly to the M540.

To connect the ECG lead wire set

1. Insert the neonatal ECG adapter cable (B) into the recessed ECG connector (A) on the side of the M540.

 Orient the neonatal ECG adapter cable (B) so the exposed pins face towards you as you push them firmly into the channel.

2. Insert the spacer (D) to protect the unused ECG lead pins on the M540.

3. Connect the individual neonatal ECG electrodes (C) to the neonatal ECG adapter cable (B).

 For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.

NOTE

An ECG lead wire set can rest in the ECG connector of the M540 without actually being connected. Make sure that all ECG lead wire sets are pushed firmly into the ECG connector of the M540.

- **A** M540 ECG connector
- **B** Neonatal ECG adapter cable
- **C** Neonatal ECG electrodes
- **D** Spacer
Patient preparation for ECG monitoring

The following tips provide optimal ECG monitoring results but must never replace hospital-approved practices or manufacturer’s recommendations.

Follow hospital procedures for proper skin preparation. Dräger recommends Ag/AgCl disposable electrodes. Never use disposable electrodes after their expiration date and make sure that there is enough gel and that the gel has not dried out.

P- and T-waves with amplitudes exceeding 0.2 mV can be interpreted as QRS complexes. To allow detection of low heart rate conditions under these circumstances, place the lead with the highest R-wave in channel ECG1. If P- and T-waves continue to be misinterpreted, reposition the electrodes or use a pulse oximeter to monitor the pulse rate.

To maintain a clear signal, change electrodes every 24 to 48 hours or more often when the following occurs:
- ECG signal degradation
- Excessive patient perspiration
- Skin irritation

Consider the following when selecting electrode sites:
- Surgery – keep electrodes as far from the surgical site as possible, while maintaining a clinically useful lead configuration. Place the cable and lead wires as far from the ESU as possible and perpendicular to the ESU cables.
- Burn Patients – use sterile electrodes. Clean the equipment thoroughly and follow hospital infection control procedures.

Electrosurgery

Integrated ESU suppression improves the performance of the monitor during electrosurgery, reduces noise on ECG waveforms, and protects the patient from burns.

To minimize interference from the electrosurgical unit

1. Select the heart rate parameter box.
 or
2. Select Sensor parameters... from the main menu bar.
3. Select the Settings 2 tab (if not already selected).
4. Select ESU next to the Filter selection.

NOTE

12-lead monitoring is not available when the ESU filter is enabled. Likewise, the ESU filter selection is not available when you are using 12-lead monitoring.

If the Filter selection is set to ESU at the Cockpit and you switch to a 12-lead cable type at the M540, the Filter setting automatically changes to Monitor at the Cockpit.
ECG display

On the Cockpit, the ECG display consists of:

- ECG parameter box
- ECG waveforms

ECG parameter box

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

NOTE

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

The ECG parameter box contains the following elements:

- **A** Parameter label
- **B** Units of measure – can be activated/deactivated
- **C** Upper/lower alarm limits or crossed triangle symbol when alarms are deactivated
- **D** Heart rate value
- **E** Heart symbol that flashes with each detected ECG complex (if pacer detection is activated, the symbol appears as \(\text{P}\) when a paced beat is detected)

During brief artifact episodes, the parameter box does not display a heart rate value.
ECG waveforms

The ECG waveform contains the following elements:

A Lead label
B Selected waveform scale
C Message field indicating the filter and pacer setting. For example, the message *Pacer off* appears when you deactivate pacer detection.

If pacer detection is activated (see page 196), blue pacer spikes identify paced beats. Pacer spikes are printed on strip recordings.

Depending on the selected lead wire set and the ECG cable type, up to 3 ECG waveforms are displayed.

<table>
<thead>
<tr>
<th>Lead wire set</th>
<th>Available ECG leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three electrodes</td>
<td>I, II, or III</td>
</tr>
<tr>
<td>Five electrodes</td>
<td>I, II, III, aVR, aVL, aVF, V 1)</td>
</tr>
<tr>
<td>Six electrodes</td>
<td>Standard: I, II, III, aVR, aVL, aVF, V, V+ 1)</td>
</tr>
<tr>
<td></td>
<td>TruST: I, II, III, aVR, aVL, aVF, dV1, V2, dV3, dV4, V5, dV6 2)</td>
</tr>
<tr>
<td>6 + 4 electrodes</td>
<td>I, II, III, aVR, aVL, aVF, V1 to V6 3)</td>
</tr>
</tbody>
</table>

NOTE:

1) V and V+ are chest leads
2) The letter 'd' indicates a derived lead
3) Using a 6-lead and a 4-lead wire set provides 12 monitored ECG leads

To select the number of leads and the lead wire set, see page 194.
ECG colors

Lead wire connectors to the electrodes are labeled and color-coded according to IEC and AHA.

<table>
<thead>
<tr>
<th>IEC</th>
<th>AHA/US</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Yellow</td>
</tr>
<tr>
<td>F</td>
<td>Green</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
</tr>
<tr>
<td>C/C2</td>
<td>White/white and yellow</td>
</tr>
<tr>
<td>N</td>
<td>Black</td>
</tr>
<tr>
<td>C+/C5</td>
<td>Gray and white/white and black</td>
</tr>
<tr>
<td>C6</td>
<td>White and violet</td>
</tr>
<tr>
<td>C4</td>
<td>White and brown</td>
</tr>
<tr>
<td>C3</td>
<td>White and green</td>
</tr>
<tr>
<td>C1</td>
<td>White and red</td>
</tr>
<tr>
<td></td>
<td>LA Black</td>
</tr>
<tr>
<td></td>
<td>LL Red</td>
</tr>
<tr>
<td></td>
<td>RA White</td>
</tr>
<tr>
<td></td>
<td>V/V2 Brown/brown and yellow</td>
</tr>
<tr>
<td></td>
<td>RL Green</td>
</tr>
<tr>
<td></td>
<td>V+/V5 Gray and brown/brown and orange</td>
</tr>
<tr>
<td></td>
<td>V6 Brown and violet</td>
</tr>
<tr>
<td></td>
<td>V4 Brown and blue</td>
</tr>
<tr>
<td></td>
<td>V3 Brown and green</td>
</tr>
<tr>
<td></td>
<td>V1 Brown and red</td>
</tr>
</tbody>
</table>
ECG, arrhythmia, and ST segment

Electrode placement

Standard configuration, three electrodes (IEC/AHA)

![Image of electrode placement diagram]

Standard configuration, five electrodes (IEC/AHA)

![Image of electrode placement diagram]
ECG, arrhythmia, and ST segment

Pacer configuration, five electrodes (IEC/AHA)

Standard configuration, six electrodes (IEC/AHA)
ECG, arrhythmia, and ST segment

12-lead configuration, ten electrodes for 12-lead Rest ECG monitoring (AHA)

12-lead configuration, ten electrodes for 12-lead Rest ECG monitoring (IEC)
12-lead monitoring

Standard 12-lead monitoring is only available when you use a 6-lead and a 4-lead wire set. 12-lead monitoring using a 10-lead wire set is a locked option that must be purchased separately. Place the chest electrodes in positions 1 through 6 as shown on page 192.

TruST 12-lead monitoring offers real-time assessment of ST segment deviations with only six electrodes. TruST uses the conventional 6-lead standard electrode placement (see page 191), measuring 8 leads and interpolating 4 chest leads. TruST is available for adult and pediatric patients, but not for neonatal patients.

You can view all ECG waveforms, including TruST, on the Show all page (see page 197). For information on how to activate TruST, see page 215.

WARNING
Do not select TruST leads for ECG signal processing. If the QRS morphology of a TruST lead differs from that of its equivalent conventional lead, always refer to the conventional lead.

Accessing the ECG functions

- Select the heart rate parameter box to select the ECG page directly.
- or
- 1 Select Sensor parameters... from the main menu bar.
- 2 Select the ECG tab to access the ECG page.
 If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >>> symbol and the display filter button.
- 3 Select the Settings 1, Settings 2, Show all tabs.
 The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.
ECG parameter setup functions

All ECG setup functions take place in the **ECG pages**.

WARNING

When the setting **HR source** is set to **Auto**, no alarm sounds and no message appears in the header bar when an ECG lead is disconnected from the patient.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse tone volume</td>
<td>Off, 5, 10 (default) to 100 % in increments of 10 %</td>
<td>Sets the volume of the pulse tone.</td>
</tr>
<tr>
<td>Tone source</td>
<td>– ECG (default)</td>
<td>Sets the source of the pulse tone.</td>
</tr>
<tr>
<td></td>
<td>– SpO2</td>
<td></td>
</tr>
<tr>
<td>HR source</td>
<td>– ECG (default) – derives the heart rate from the ECG signal.</td>
<td>Selects a different source for the heart rate when the ECG channel is unavailable due to artifact resulting from surgical procedures.</td>
</tr>
<tr>
<td></td>
<td>– ART – derives the heart rate from the arterial pressure signal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– SpO2 – derives the heart rate from the pulse oximetry signal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Auto – derives the heart rate either from the ECG signal or other available sources. If an ECG signal is not available, the M540 switches to ART, and then to SpO2.</td>
<td></td>
</tr>
<tr>
<td>Waveforms</td>
<td>1, 2 (default), 3</td>
<td>Selects the number of displayed waveforms.</td>
</tr>
</tbody>
</table>
ECG, arrhythmia, and ST segment

Leads

- Three electrodes: I, II, III
- Five electrodes: I, II, III, aVR, aVL, aVF, V
- Six electrodes: I, II, III, aVR, aVL, aVF, V, V+
- Six electrodes (with TruST activated): I, II, III, aVR, aVL, aVF, dV1, V2, dV3, dV4, V5, dV6
- Ten electrodes: I, II, III, aVR, aVL, aVF, V1 to V6
- Default for lead 1: II
- Default for lead 2: V (with TruST and a 6-lead plus a 4-lead wire set, the default is: V2)
- Default for lead 3: aVF

Assigns specific leads for each waveform depending on which lead mode is selected.

Size [mV/cm]

- 0.25, 0.5, 1 (default), 2, 4, 8 mV/cm

Sets the scale of individual ECG waveforms.

Color

- Red, green (default), blue, yellow, light blue, purple, orange, white

Determines the color of the waveforms and parameter labels and values.

Settings 2 page

Filter

- **Off** – provides the greatest sensitivity to noise or artifact (the message **Filter off** appears in the waveform channel).
- **Monitor** (default) – recommended for standard monitoring; reduces baseline drift, muscle artifact, and power line interference. No message appears in the waveform channel.
- **ESU** – reduces signal distortion during electrosurgery (the message **Filter ESU** appears in the waveform channel).

12-lead monitoring is not available when the ESU filter is enabled. Likewise, the ESU filter selection is not available when you are using 12-lead monitoring.

Controls the sensitivity to various artifact sources. When the M540 is in OR mode and the filter selection is set to **Monitor**, the hardware low pass ESU filter is activated. None of these filter settings are of diagnostic quality.
<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacer detection</td>
<td>– On (default)</td>
<td>Determines whether pacer impulses are detected. See “Pacer fusion mode” on page 198 for precautions before you start this mode.</td>
</tr>
<tr>
<td>(Not available in neonatal mode)</td>
<td>– Off – the message Pacer off appears in the waveform channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Fusion – the message Pacer fusion appears in the waveform channel</td>
<td></td>
</tr>
<tr>
<td>QRS sync marker</td>
<td>– On – displays QRS synchronization markers</td>
<td>Determines whether vertical white markers appear on the waveform to identify QRS complexes. The markers help determine when it is safe to perform synchronized cardioversion.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>Cable type</td>
<td>– Auto detect (default)</td>
<td>When set to Auto detect, this feature detects the number of connected lead wires automatically. If auto detect mode does not detect the connected lead wire set, it allows you to select the cable type manually. “12” denotes a combination of a 6-lead and 4-lead wire set for 12-lead monitoring.</td>
</tr>
<tr>
<td>(TruST is only available with a 6-lead wire set)</td>
<td>– 3-, 5-, 6-electrodes, and 12 leads</td>
<td>When using the ECG extension cable, the system always assumes the cable is a 6-lead wire set.</td>
</tr>
<tr>
<td>ARR Processing</td>
<td>– ECG1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ECG1 & 2 (default)</td>
<td>ECG1 setting – arrhythmia processing occurs only on the lead displayed in waveform channel 1. ECG1 & 2 setting – arrhythmia processing occurs on the leads displayed in the waveform channels 1 and 2.</td>
</tr>
<tr>
<td></td>
<td>The ECG1 & 2 selection is not available if the neonatal patient category is selected.</td>
<td></td>
</tr>
<tr>
<td>Size all ECG [mV/cm]</td>
<td>0.25, 0.5, 1 (default), 2, 4, 8 mV/cm</td>
<td>Sets the amplitude of all displayed ECG leads.</td>
</tr>
<tr>
<td>QRS threshold</td>
<td>– Normal (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Low</td>
<td>This function is only available for adult and pediatric patients. Normal detects QRS complexes of normal amplitude. Low detects QRS complexes of low amplitude.</td>
</tr>
</tbody>
</table>
ECG, arrhythmia, and ST segment

Monitoring paced patients

When pacer detection is activated, the M540 uses the following specifications to identify a pulse as a pacer pulse:

- Amplitude (ap): ± 2 to ± 700 mV
- Width (dp): 0.2 to 2.0 ms
- Rise/Fall times (min): 0.1 dp, 100 ms
- Overshoot (min): 0.025 ap, 2 mV
- Recharge time constant: 4 to 100 ms

If a QRS complex occurs within 250 ms of a pacer impulse, it is also considered a paced beat. A paced beat is identified as followed:

- In the heart rate parameter box, the letter ‘P’ appears next to the flashing heart symbol when a pacer pulse is detected.
- On the ECG waveform, blue spikes appear to identify pacer spikes.

When pacer detection is deactivated, the message **Pacer off**, appears in the top ECG channel.

To optimize pacer monitoring, follow the guidelines on page 200.

To activate/deactivate pacer detection

- Select the heart rate parameter box to select the ECG page directly.
- or
- 1 Select **Sensor parameters...** from the main menu bar.
- 2 Select the ECG tab to access the ECG page.
- 3 Select the **Settings 2** tab.
- 4 Select **On** next to **Pacer detection**.

Resp. monitoring

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp. monitoring</td>
<td>- On (default for neonate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Off (default for adult/pediatric)</td>
<td>Activates/deactivates respiration monitoring.</td>
</tr>
</tbody>
</table>

This page displays all available leads (up to 12).

NOTE

Pacer detection is deactivated automatically in neonatal mode or when the ESU filter is activated.
Pacemaker precautions

The M540 has been tested for pacemaker pulse detection. However, it is impossible to anticipate every clinically possible waveform characteristic. For paced patient, the M540 could therefore miscount heart rates and misinterpret rate-dependent arrhythmias. False low-rate alarms can result under the following conditions:

- Fused beats and asynchronous pacemakers, when coupling intervals are in the range of +10 to −90 ms
- 700-mV pacer pulses followed by QRS complexes smaller than 0.5 mV
- Asynchronous pacemaker pulses with overshoot

WARNING

Make sure pacer detection is deactivated for patients without pacemakers. Make sure it is activated for patients with pacemakers. Deactivating pacer detection for paced patients may result in pacemaker pulses being counted as regular QRS complexes, which could prevent an asystole alarm from being detected. Always verify that the pacer detection status is correct for the patient. Be aware that setting the ECG filter option to ESU deactivates pacemaker detection automatically.

WARNING

Interference from a monitor may cause some rate-adaptive implantable pacemakers to pace at unnecessarily high rates. Be extra vigilant with patients when using these types of pacemakers.

WARNING

Always keep pacemaker patients under close surveillance and monitor their vital signs carefully.

- Do not assess the patient’s condition exclusively from the heart and respiratory rate values the monitor displays and the rate alarms that are generated. Heart rate meters may continue to count the pacemaker rate during cardiac arrest or some arrhythmias.
- Some pacemakers (especially external pacemakers with body surface electrodes) emit pulses with amplitudes far exceeding the 700 mV maximum amplitude specified for the M540. The M540 may incorrectly detect these large pacemaker pulses as valid QRS complexes and may fail to detect cardiac arrest.

WARNING

Impedance respiration and pacemaker detection are inoperative when the ESU filter is selected. Refer to "Electrosurgery" on page 18 for general safety precautions.

Pacer fusion mode

Pacer fusion mode offers increased detection sensitivity to fused paced beats, thereby reducing false asystole and low heart rate alarms.

WARNING

Pay close attention to pacemaker patients being monitored in Fusion mode because this mode may increase the risk of falsely counting pacemaker spikes as QRS complexes, thus failing to detect cardiac arrest.
CAUTION

Fusion mode pacer detection is not intended for use with large-signal, unipolar pacemakers. It is intended for use only with bipolar pacemakers. Observe the following:

- Select _Fusion_ mode only in situations where it becomes necessary to suppress repeated false asystole and/or false low heart rate alarms.
- Before selecting _Fusion_ mode, be certain that the patient has a bipolar pacemaker (external or implanted) and that it is accurately programmed as appropriate for that patient.
- Do not use _Fusion_ mode if you are uncertain as to what type of pacemaker is being used.

NOTE

The displayed heart rate may be incorrect if the pacemaker pulse wanders through the ECG waveform (ineffective pacing). During the wandering pacemaker test required by IEC 60601-2-27 and ANSI/AAMI EC13, the displayed heart rate varied between 15 and 30 bpm (rather than consistently being 30 bpm). The displayed heart rate was not affected by the presence of pacemaker pulses during any of those standard’s other pacemaker tests.

Infusion or roller bypass pumps

Interference from these devices can cause pacer spikes to appear on the waveform although the ECG appears normal. To determine if the pump is the cause of the artifact, turn it off, if possible. To minimize the artifact, choose the lead with the best signal or replace the electrodes. Rerouting invasive pressure tubing away from the infusion tubing can also improve the ECG signals.

Line isolation devices

To minimize the effect of line isolation devices, which can cause temporary disturbances in the ECG signal, follow these precautions:

- Choose the lead with the best signal for ECG monitoring.
- Check the ECG electrodes; replace them, if necessary.

Transcutaneous electrical nerve stimulators

Signals from transcutaneous electrical nerve stimulators (TENS) often resemble pacer signals and can be labeled as such. The M540 can reject valid QRS complexes, which follow misinterpreted TENS signals. If TENS signals continue to register as pacer spikes, deactivate pacer detection (see page 196).

Device interference with pacemaker monitoring

The following devices can interfere with pacemaker monitoring.

Impedance-derived rate response pacemakers

These pacemakers emit pulses that adjust the pacemaker rate to the respiratory rate. These pulses could be falsely interpreted as pacer pulses. For impedance-derived rate response pacemakers, modify the electrode placement until the blue spikes on the waveform disappear since they are not related to real pacer impulses.
Optimizing pacer processing

You can minimize interference and optimize ECG signal acquisition and processing for paced patients.

To optimize pacer processing

1. Select the heart rate parameter box to select the ECG page directly.
2. Select Sensor parameters... from the main menu bar.
3. Select the ECG tab to access the ECG page.
4. Select the Settings 2 tab.
5. Select On next to Pacer detection. Select the lead with the least interference and highest R-wave for display in ECG channel 1.
6. Select the Filter setting Monitor or Off and determine which setting provides the clearest signal.

Arrhythmia monitoring overview

The selected arrhythmia mode (see page 202) controls which arrhythmia parameters are monitored and how they are displayed. Each occurrence of an arrhythmia event is stored in the Alarm history page provided the archive setting is configured (see page 127).

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 arrhythmia functions.
The arrhythmia monitoring functions have configurable parameter-specific setup pages (see page 206).

WARNING
The banner HR alarms off appears in the right most field in the header bar whenever you deactivate heart rate alarms.

The HR, ASY, VF off banner appears when arrhythmia monitoring is deactivated, the ASY/VF alarms feature is set to Follow HR alarm, and heart rate alarms are deactivated.

Selecting arrhythmia leads

Appropriate lead selection is essential for accurate arrhythmia monitoring. Ideally, the two best leads should be assigned to the top two waveform channels.

The following two selections are available:

- **ECG1** (single channel selection) – dedicates processing to the lead in the top channel.

- **ECG1 & 2** (dual channel selection) – determines the heart rate and ARR based on the leads in the two top channels.

NOTE

If French NFC mode is activated (see page 419), you cannot deactivate heart rate alarms.

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11.

1. Select the heart rate parameter box to select the ECG page directly.
2. Select Sensor parameters... from the main menu bar.
3. Select the ECG tab to access the ECG page.
4. Select the Settings 2 tab.
5. Select the button next to ECG1 or ECG1 & 2 and select the desired lead.
ECG, arrhythmia, and ST segment

Arrhythmia processing

Arrhythmias are identified using an internal detection process. This process does the following:
- Filters out ECG signal irregularities
- Detects the beat pattern
- Classifies the beat pattern
- Detects the rhythm

Based on this detection process, arrhythmias and other associated events are reported in the following order of severity:

1. Asystole
2. VF (ventricular fibrillation)
3. VTACH (ventricular tachycardia)
4. RUN (ventricular run)
5. AIVR (accelerated idioventricular rhythm)
6. SVT (supraventricular tachycardia)
7. CPT (ventricular couplet)
8. BGM (bigeminy)
9. TACH (sinus tachycardia)
10. BRADY (sinus bradycardia)
11. PAUSE (user selectable interval)
12. ARTF (artifact, background rhythm)

For a description of the arrhythmias and associated events, see Arrhythmia modes.

Arrhythmia modes

If arrhythmia monitoring is activated, the selected arrhythmia mode determines how many events are monitored. Arrhythmia modes include Basic, Advanced, and Off.

NOTE
The Advanced arrhythmia mode is only available when the full arrhythmia option is activated.

When the ASY/VF alarms setting is set to Always on, asystoles and ventricular fibrillation events are always reported, even when arrhythmia monitoring is deactivated.

The following table lists Basic and Advanced arrhythmia events that are reported with each monitoring mode. The table also lists detected events when the Arrhythmia mode is Off.
ECG, arrhythmia, and ST segment

<table>
<thead>
<tr>
<th>Arrhythmia monitoring off</th>
<th>Certain ventricular tachycardias have sinusoidal waveforms closely resembling ventricular fibrillation. Because of the similarities between these waveforms, such types of ventricular tachycardia can be classified as ventricular fibrillation, the more serious of the two conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASY Asystole</td>
<td>4 seconds pass without the detection of a valid QRS complex.</td>
</tr>
</tbody>
</table>
| VF Ventricular Fibrillation | Sinusoidal waveform with fibrillation characteristics.
| Basic arrhythmia monitoring mode | (the following additional events are detected) |
| VTACH Ventricular Tachycardia | N or more PVCs are detected in a time interval $T = \frac{60 \times (N - 1)}{R}$, where N is the VTACH count and R is the VTACH rate.
| PVC Premature Ventricular Contraction | PVC alarm limit exceeded. The PVC parameter value represents the number of QRS complexes classified as PVCs over a 1-minute time interval. |
| ARTF Artifact | More than 50% of beats in the last minute were classified as questionable. |
| Advanced arrhythmia monitoring mode | (includes Basic mode events plus the following additional events) |
| RUN Ventricle RUN | Series of 3 to N-1 consecutive PVCs with a beat-to-beat rate >= the VTACH rate.
| AIVR Accelerated Idioventricular Rhythm | Series of 3 or more PVCs with a rate less than the VTACH rate. |
| SVT Supraventricular Tachycardia | N or more consecutive normal beats, with a beat-to-beat rate greater than or equal to the SVT setting.
| CPT Ventricle Couplet | Sequence of beats with the pattern: normal, PVC, PVC, normal. |
| BGM Ventricle Bigeminy | Sequence of beats with the pattern: normal, PVC, normal, PVC, normal. |
| TACH Tachycardia | N or more consecutive normal beats, with a beat-to-beat rate >= TACH rate setting.
| BRADY Bradycardia | Eight or more consecutive normal beats, with an average rate <=bradycardia rate setting.
| PAUSE Pause | Sequence of two beats classified as normal or PVC, with an interval >= pause rate value in seconds (±100 ms). |

1) N is the event count set in the count column of the arrhythmia setup table (see page 206).
2) In neonatal mode, you set alarm limits for BRADY in the alarm setup page. The M540 alarms for this event as a limit violation.
3) A PVC or another abnormal beat breaks the analysis sequence and restarts analysis.

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 203
To select the arrhythmia modes

1. Select the heart rate parameter box to select the ECG page directly.

or

1. Select Sensor parameters... from the main menu bar.

2. Select the ECG tab to access the ECG page.

3. Select the ARR settings tab.

4. Select one of the following modes next to ARR mode button, located below the arrhythmia alarm setup table:
 - Off
 - Basic
 - Advanced (only available when the full arrhythmia option is unlocked)

Arrhythmia display

When arrhythmia monitoring is activated, arrhythmia events appear in the heart rate parameter box or in a separate parameter box, depending on how many leads are selected for display.

When arrhythmia monitoring is deactivated (see page 204) and at least one ECG waveform is displayed, asystole and ventricular fibrillation events are still reported.

NOTE

To make sure that asystole and ventricular fibrillation alarms are reported even when HR monitoring is turned off, set the ASY/VF alarms selection in the Alarms > General settings page to Always on (see page 406).
Combined heart rate /arrhythmia parameter box

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

When one or two ECG leads are selected for display and arrhythmia monitoring is activated, all arrhythmia values and labels appear in the heart rate parameter box. The arrhythmia parameter box contains the following elements:

- **A** Heart rate parameter label
- **B** Units of measure – can be activated/deactivated
- **C** Arrhythmia label
- **D** Area reserved for actual event calls (for example, *Brady*) or the message *LEARN*
- **E** Upper/lower alarm limits or crossed triangle symbol when alarms are deactivated
- **F** Number of Premature Ventricular Contractions (PVC) per minute
- **G** PVC/min label
- **H** Heart rate
- **I** Heart symbol that pulsates with each detected beat (if pacer detection is activated, the symbol appears as \(\heartsuit \) when a paced beat is detected)

Separate arrhythmia parameter box

When three ECG channels are selected for display and arrhythmia monitoring is activated, all values and labels appear in a separate parameter box below the heart rate parameter box.
Accessing the arrhythmia functions

- Select the heart rate parameter box to select the ECG page directly.
 or
 1 Select Sensor parameters... from the main menu bar > ECG tab to access the ECG page.
 2 Select the ARR settings tab.

Arrhythmia parameter setup functions

All arrhythmia setup functions take place in the ARR settings page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR mode</td>
<td>– Off</td>
<td>Selects which events are reported (see page 202 for more details).</td>
</tr>
<tr>
<td></td>
<td>– Basic (default),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Advanced (requires the full arrhythmia locked option)</td>
<td></td>
</tr>
<tr>
<td>Relearn</td>
<td>None</td>
<td>Establishes a new QRS templates.</td>
</tr>
</tbody>
</table>

See "Configuring the arrhythmia alarm setup" on page 122 for details on available arrhythmia alarm functions.
Monitoring ST overview

ST analysis examines normal QRS complexes from up to 12 ECG leads. The M540 learns each ST lead, combines the measurements into an average QRS complex, and derives the ST segment deviation. ST monitoring is available for adult and pediatric patients.

The ST segment deviation is defined as the displacement (in mm or mV) above or below the isoelectric level. The deviation measurement compares the isoelectric point to the ST measurement point. The following illustration identifies the measured elements of a QRS complex.

![QRS complex diagram]

A Fiducial point C ST measurement point
B ST level D QRS offset
E QRS onset F Isoelectric point

NOTE
ST analysis is always performed using a dedicated filter which ensures diagnostic quality. The ECG filter settings (ESU, Monitor, and Off) are not of diagnostic quality, and as a result, the ST segment of the ECG waveform may appear differently from the ST segment of the ST complex. An ECG report is not of diagnostic quality. Therefore, the ST segment of the ECG waveform on the report may appear differently from the ST segment of the ST complex. The only report of ECG diagnostic quality is a Rest ECG report.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 ST functions.

The ST monitoring functions are configurable on parameter-specific setup pages (see page 215).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11.

Standard ST monitoring

The 6-lead wire set monitors eight ECG leads, of which two are chest leads (V and V+). 12-lead ST analysis provides the most comprehensive view of a patient’s condition. However, with optimal placement of the V and V+ leads and using only eight leads, you can achieve an ST analysis that is almost as comprehensive but with fewer electrodes.
TruST 12-lead monitoring

This feature offers real-time assessment of 12 ST segment deviations, with only six electrodes, which provide eight measured ECG leads and four derived chest leads. The derived leads are identified by adding the letter ‘d’ before the lead label. When TruST monitoring is activated, the V-lead defaults to V2 and the V+ lead defaults to V5. Although you can select derived leads for display, they are excluded from arrhythmia and QRS processing. ECG and ST reports contain the label ‘d’ to identify a derived lead.

12-lead ST monitoring

During 12-lead ST monitoring, the M540 acquires 12 ST leads in addition to the following:

- ST Vector Magnitude (STVM) – the magnitude (mm or mV) of the ST vector. It is a summary vector, combining the ST values from all 12 leads. STVM is trended and has its own alarm limits.

- ST Change in Vector Magnitude (STCVM) – the change of magnitude (mm or mV) between the current ST vector and the ST vector at the time of the last reference. STCVM values also show a change in the location of the ST vector over time.

To activate or deactivate ST monitoring

You can activate/deactivate ST monitoring at any time as follows:

1. Select the heart rate parameter box to select the ECG page directly.
2. Select Sensor parameters... from the main menu bar.
3. Select the ECG tab to access the ECG page.
4. Select On or Off next to ST monitoring.

Connecting lead wire sets for ST monitoring

ST monitoring uses the following lead configurations for each available ST monitoring mode:

- Standard ST monitoring – uses the standard 3-, 5-, and 6-lead wire sets. For more information see the diagrams starting on page 190.

- TruST – provides 12-lead ST monitoring with a 6-lead wire set (see page 183).

- 12-lead ST monitoring – uses the standard 12-lead ECG configuration with a 6-lead plus a 4-lead-wire set (see page 183).
ST display

When ST alarms are activated, the Cockpit alarms for all ST leads whether they are displayed or not. In either case, the ST parameter box flashes and the alarming lead is identified in the header bar.

When ST monitoring is activated, current ST values display in a separate parameter box below the heart rate parameter box.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The ST parameter box contains the following elements:

- A Selected ST lead labels
- B Upper/lower alarm limits or crossed triangle symbol when alarms are deactivated
- C Selected ST deviation values
- D Units of measure – can be activated/deactivated

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.
Reviewing ST complexes

You can view all ST complexes or zoom in on a single complex. The following functions are available in either view:
- Changing the isoelectric point
- Changing the ST measuring point
- Relearning the QRS morphology
- Saving a reference complex
- Requesting an ST report

In all trends, a solid white vertical line on the ST trend graphs marks changes in ST measuring points along with a time stamp.

Reviewing all ST complexes

The following diagram shows the ST complex page. The number of displayed ST complexes depends on the connected lead wire set.

To access ST complexes
- Select the heart rate parameter box to select the ECG page directly.
- or
- 1 Select Sensor parameters... from the main menu bar.
- 2 Select the ECG tab to access the ECG page.
- 3 Select the ECG tab (if not already selected).
- 4 Select the ST complex tab (if not already selected).
Zooming in on an ST complex

The following diagram shows a single ST complex screen when you zoom in on one ST complex. To zoom in on a single ST complex, select an ST panel on the ST complex page (see page 210).

A ECG tab
B Waveform scale
C ST complex tab
D Save reference button – saves the displayed ST complex as a reference point
E Print button for printing an ST report
F Reference on/off button
G ST button
H Lead button for selecting the desired lead
I ISO button
J Show all button – accesses the general ST complexes screen
K Relearn button (see page 217)
L ST label (unique for each ST lead)
ST measuring points

You can change the ST measuring points and isoelectric point from the general or from the single ST complexes page (see illustrations on page 210). In both pages, the setup buttons for changing the measuring points are located at the bottom of the screen. Changing the measuring point of one complex adjusts the measuring points for all ST complexes.

Adjusting ST measuring points

Whenever you adjust the isoelectric and ST measuring points, the ST deviation is recomputed. During this computation, the changing ST deviation values appear yellow. The values appear green when the computation is completed.

To change ST measuring points

- Select the heart rate parameter box to select the ECG page directly.
 - or
- 1 Select Sensor parameters... from the main menu bar.
- 2 Select the ECG tab to access the ECG page.
- 3 Select the ST complex tab (B) to display the general ST complex page.
- 4 Select an individual ST panel to zoom in on a single ST complex.
- 5 Select the ISO button (I) and use the rotary knob to dial to the desired setting.
- 6 Select the ST button (G) and use the rotary knob to adjust the ST measuring point.
ST reference

You can save ST reference complexes as reference points for future ST deviation measurement comparisons. The first time you relearn QRS complexes, the current ST data are saved as a reference data. The original ST reference data are updated each time you save ST references.

Saving ST reference points

You can save the ST reference from the general ST complexes page (see page 210) and the single ST complex page (see page 210). Saving a reference point in either screen, saves all currently displayed ST complexes as reference points.

To save ST reference points

- Select the heart rate parameter box to select the ECG page directly.

 or

 1 Select Sensor parameters... from the main menu bar.

 2 Select the ECG tab to access the ECG page.

 3 Select the ST complex tab to display the general ST complex page.

 4 Select an individual ST panel to zoom in on a single ST complex.

 5 Select the ISO and ST buttons at the bottom of the screen and use the rotary knob to dial the desired values. Click on the rotary knob to accept the new values.

 6 Select the Save reference button (in either ST complex page).
ST alarm settings

The **ST alarms** page allows you to configure the following ST-specific alarm settings:

- Activating or deactivating individual ST alarms
- Setting upper and lower ST alarm limits
- Configuring the alarm archive function
- Auto setting all ST limits

For more detailed information on how to configure these functions, see "Alarm setup for ST" on page 123.

To access the **ST alarms** page

- Select the heart rate parameter box to select the **ECG** page directly.
 - or
 1. Select **Sensor parameters...** from the main menu bar.
 2. Select the **ECG** tab to access the **ECG** page.
 3. Select the **ST alarms** tab to display the **ST alarms** page.

Accessing the ST settings

- Select the heart rate parameter box to select the **ECG** page directly.
 - or
 1. Select **Sensor parameters...** from the main menu bar.
 2. Select the **ECG** tab to access the **ECG** page.
 3. Select the **ST settings** tab.
ST setup functions

All ST setup functions take place in the **ST settings** page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not available in neonatal mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– On (default)</td>
<td>Activates/deactivates ST monitoring and determines whether an ST parameter box is displayed and ST parameters are trended.</td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
<tr>
<td>TruST 12-lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Not selectable in neonatal mode. TruST is only available when a 6-lead wire set is connected)</td>
<td>Determines whether TruST monitoring is available (see page 199).</td>
</tr>
<tr>
<td></td>
<td>– On – TruST monitoring is available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Off (default) – TruST monitoring is not available</td>
<td></td>
</tr>
<tr>
<td>ST relearn</td>
<td>None</td>
<td>Purges stored average ST complexes, blanks displayed average ST complexes, and learns the arrhythmia and dominant QRS pattern.</td>
</tr>
<tr>
<td></td>
<td>(not available if ECG is not connected, in neonatal mode, or ST monitoring is disabled)</td>
<td></td>
</tr>
<tr>
<td>ST lead1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST lead2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST lead3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Three electrodes: STI, STII, STIII</td>
<td>Selects an ST lead for analysis and display.</td>
</tr>
<tr>
<td></td>
<td>– Five electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Six electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STdV1, STV2, STdV3, STdV4, STV5, STdV6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Six electrodes (with TruST activated): STI, STII, STIII, STaVR, STaVL, STaVF, STdV1, STV2, STdV3, STdV4, STV5, STdV6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Ten electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STV1, STV2, STV3, STV4, STV5, STV6, STCVM, and STVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Default for ST lead1: STI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Default for ST lead2: STaVL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Default for ST lead3: STV (with TruST and a 10-lead wire sets, the default is: STV2)</td>
<td></td>
</tr>
</tbody>
</table>
Selections

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event duration [s]</td>
<td>Off, 15, 30, 45, 60 (default) seconds</td>
<td>Defines a period an alarm condition must persist, before alarm signals are generated.</td>
</tr>
<tr>
<td>ST Mini Trend</td>
<td>– Three electrodes: STI, STII, STIII</td>
<td>Selects an ST lead for inclusion in the ST mini trend display.</td>
</tr>
<tr>
<td></td>
<td>– Five electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Six electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STV, STV+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Six electrodes (with TruST activated): STI, STII, STIII, STaVR, STaVL, STaVF, STdV1, STV2, STdV3, STdV4, STV5, STdV6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Ten electrodes: STI, STII, STIII, STaVR, STaVL, STaVF, STV1, STV2, STV3, STV4, STV5, STV6, STCVM, and STVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Default: STII</td>
<td></td>
</tr>
</tbody>
</table>
Learning/relearning QRS pattern

The M540 creates a reference template by learning the dominant QRS pattern of a patient. The reference template is stored for reference and all subsequent beats and rhythms are compared against it and classified either as normal or irregular.

The M540 can only learn the QRS pattern of the leads that are selected for arrhythmia processing. If only one lead is available, the M540 only learns on one lead. If no lead wire set is connected, the M540 cannot perform a learning phase. In this case, an error message is displayed.

The M540 starts a learning phase automatically when:

- Arrhythmia monitoring is activated
- A different arrhythmia mode is selected
- Different ECG leads are selected for arrhythmia processing
- The cable type is changed

During the learning phase, which lasts approximately 30 to 40 seconds, a relearning message appears in the message field. In addition, the message LEARN appears in the ECG parameter box.

If ST monitoring is activated, ST deviations are also recomputed during the learning phase.

Manual relearning

Relearn the QRS pattern of a patient when:

- Leads are reconnected or electrodes are repositioned
- Eight hours have passed since the last learning phase
- Questionable ARR calls appear on the ECG
- Other significant changes appear on the ECG

You can initiate a relearning phase from the arrhythmia and the ST pages.

To relearn from the arrhythmia setup page

- Select the heart rate parameter box to select the ECG page.

 or

 1 Select Sensor parameters... from the main menu bar.

 2 Select the ECG tab to access the ECG page.

 3 Select the ARR settings tab.

 4 Select Relearn.

To relearn from the ST page

- Select the heart rate parameter box to select the ECG page.

 or

 1 Select Sensor parameters... from the main menu bar.

 2 Select the ECG tab to access the ECG page.

 3 Select the ST settings tab.

 4 Select Relearn.

NOTE

If configured to appear on the main menu bar, a Relearn ARR button is accessible on the main menu bar. For more information, see page 398.

NOTE

If configured to appear on the main menu bar, a Relearn ST button is accessible on the main menu bar. For more information, see page 398.
Impedance respiration (AFi)

Impedance respiration (AFi)
Overview of respiration monitoring 220
Supported parameter . 220
Respiration precautions 220
Connecting the 3-, 5-, 6-lead wire sets for
respiration monitoring 221
Connecting the lead wire sets for 12-lead
monitoring. 222
Connecting the lead wires for neonatal
monitoring. 223
Patient preparation for respiration
monitoring. 224
Respiration display . 226
Respiration parameter box 226
Respiration markers . 226
Adjusting the detection threshold and
activating the respiration marker 227
Respiration measuring modes 227
Accessing the respiration settings. 228
Respiration parameter setup functions 228

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n

219


Overview of respiration monitoring

The M540 measures impedance respiration by passing a harmless high-frequency current between two EKG electrodes on the patient's chest. Electrical resistance (impedance) between the electrodes varies with the expansion and contraction of the chest during inspiration and expiration. The M540 displays a respiration waveform and respiratory rate value from these impedance changes and relays this information to the Cockpit for display.

The M540 uses EKG leads I or II for breath detection regardless of the lead selected for QRS processing.

Respiration monitoring is for adult, pediatric, and neonatal patients. The M540 can use the respiration signal for central apnea monitoring.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 respiration functions. The respiration monitoring functions are configurable in the parameter-specific setup page (see page 228).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 467.

Supported parameter

AFi – respiration rate measured by impedance (AFi values are not displayed when the HfC filter is activated – see page 195).

Respiration precautions

WARNING
The safety and effectiveness of the respiration measurement method in the detection of apnea, particularly the apnea of prematurity and apnea of infancy, has not been established.

WARNING
This device does not monitor obstructive apnea. Patients at risk for respiratory crises should be observed closely.

WARNING
Large amplitude pacemaker pulses (100 mV or greater) may interfere with the monitor’s ability to measure or detect respiration.

WARNING
The monitor reports an apneic event when no breaths are detected within the established apnea time period. Therefore, do not rely on impedance respiration monitoring as the sole method for detecting cessation of breathing. Dräger recommends the monitoring of additional parameters that indicate the patient’s oxygenation status, such as etCO2 and SpO2. Heart rate limit alarms should also be enabled and set appropriately.

WARNING
Impedance respiration and pacer detection are inoperative when the HfC filter is selected. Refer to "Electrosurgery" on page 18 for general safety precautions.
Connecting the 3-, 5-, 6-lead wire sets for respiration monitoring

The following diagram shows how to attach the lead wire sets to the M540:

To connect the ECG lead wire sets

1. Insert the 3-, 5-, or 6-lead wire set (C) into the recessed EKG connector (B) on the side of the M540 that is closest to the non-invasive blood pressure connector (A).

 Orient the ECG adapter cable lead wire set (C) so the exposed pins face towards you as you push it firmly into the channel.

2. Insert the spacer (D) to protect the unused EKG lead pins.

3. Connect the lead wires to the patient. For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.

NOTE

An EKG lead wire set can rest in the EKG connector of the M540 without actually being connected. Make sure that all EKG lead wire sets are pushed firmly into the EKG connector of the M540.

Almost every MonoLead features a number on the lead wire set indicating how many leads connect. When connecting a MonoLead, make sure the number faces in the same direction as the M540 display.
Connecting the lead wire sets for 12-lead monitoring

The ECG lead wire sets connect directly to the M540.

To connect the ECG lead wire sets:

1. Insert the 4-lead wire set (B) and the 6-lead wire set (C) into the recessed EKG connector (A) on the side of the M540.

 Orient the ECG adapter cable lead wire sets (B and C) so the exposed pins face towards you as you push it firmly into the channel.

 NOTE
 An EKG lead wire set can rest in the EKG connector of the M540 without actually being connected. Make sure that all EKG lead wire sets are pushed firmly into the EKG connector of the M540.

 Almost every MonoLead features a number on the lead wire set indicating how many leads connect. When connecting a MonoLead, make sure the number faces in the same direction as the M540 display.

2. Connect the lead wires to the patient. For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.

 NOTE
 When using a 12-lead EKG wire set where the lead wires are coiled, it is recommended that the 6-lead wire set is coiled in the same direction as the 4-lead wire set to prevent artifact. For example, both lead wire sets are either coiled towards the patient or away from the patient.
Connecting the lead wires for neonatal monitoring

The ECG lead wire sets connect directly to the M540.

To connect the ECG lead wire set

1. Insert the EKG adapter cable (B) into the recessed EKG connector (A) on the side of the M540.

 Orient the neonatal EKG adapter cable (B) so the exposed pins face towards you as you push them firmly into the channel.

 NOTE
 An EKG lead wire set can rest in the EKG connector of the M540 without actually being connected. Make sure that all EKG lead wire sets are pushed firmly into the EKG connector of the M540.

2. Insert the spacer (C) to protect the unused EKG lead pins on the M540.

3. Connect the individual neonatal EKG electrodes (E) to the neonatal EKG adapter cable (D).

 For information on applying the electrodes to the patient, refer to the illustrations starting on page 190.

A M540 EKG connector
B EKG adapter cable
C Spacer
D Neonatal EKG adapter cable
E Neonatal EKG electrodes
Patient preparation for respiration monitoring

The following tips regarding skin preparation and proper electrode placement provide strong signals with minimal artifact but must never replace hospital-approved practices or manufacturer’s recommendations. Because EKG electrodes are used for respiration monitoring, see illustrations starting on page 183 for information on electrode placement.

Follow the same precautions for respiratory monitoring as for EKG monitoring (see page 183) and observe the following general recommendations:

- Place the electrodes so they generate the clearest possible signals with minimal artifact.
- Electrodes that adhere tightly and have a large conductive area provide the best results. Use a 5-lead wire set to improve the respiration signal (where the N electrode for IEC or RL electrode for AHA is the neutral electrode).
- For adult and pediatric patients, position the electrodes to span the maximum expansion and contraction of the lungs. This is especially important in the case of deep abdominal breathers.
For neonates, place the RA and LA electrodes at the midaxillary line. Position the LL electrode below the diaphragm and umbilicus. Avoid the liver area and ventricles of the heart to prevent blood flow artifact.
Respiration display

On the Cockpit, the respiration display consists of:

- Respiration parameter box
- Respiration waveform

Respiration parameter box

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

Respiration markers

Respiration markers indicate the time of breath detection, not the beginning, or end of respiration. If respiration markers also appear during artifact, set the respiration measuring mode to manual and adjust the breath detection threshold so only valid breaths are counted.

The following diagram shows how white vertical markers on the respiration waveform can identify each detected breath.

Respiration markers are not sent to the Infinity network.

To activate or deactivate the display of respiration markers, see page 228.

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

The respiration parameter box contains the following elements:

A Impedance respiration rate label (AFi)
B Upper/lower alarm limits or crossed triangle symbols when alarms are deactivated
C Respiratory rate value
D Lung symbol that blinks with each detected breath
Adjusting the detection threshold and activating the respiration marker

- Select the respiration parameter box to select the Resp. page directly.
 or

1. Select Sensor parameters... from the main menu bar.
2. Select the Resp. tab to access the Resp. page.
3. Select the Settings 1 tab (if not already selected).
4. Select On next to Resp. marker.
5. Select Manual next to Mode.
6. Select the button next to Size [%] and use the rotary knob to dial to the lowest value where the respiration marker appears.

Respiration measuring modes

The following respiration measuring modes are available:

- **Auto** (default) – appropriate for patients with regular breathing patterns. It uses the optimal breath-detection threshold calculated at the beginning of respiration monitoring.

- **Manual** – appropriate for adult or pediatric patients whose breathing patterns show excessive variation. Also appropriate for neonates with irregular breathing rhythms whose respiration signals may otherwise not be reliably evaluated. The M540 does not set a breath-detection threshold at the beginning of respiration monitoring. Instead, the adjustments you make to the waveform size (see page 228) alter the breath detection sensitivity of the monitor.

To select the desired respiration mode, see page 228.

WARNING

If the respiration waveform size is set too low in manual mode, shallow breaths may not be counted. If it is set too high, cardiac artifact will be counted as breaths. Therefore, use the respiration marker to verify breath detection at the desired amplitude.
Impedance respiration (AFi)

Accessing the respiration settings

- Select the respiration parameter box to select the Resp. page directly.
 or

1 Select Sensor parameters... from the main menu bar.

2 Select the Resp. tab to access the Resp. page.
 If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

3 Select the Settings 1 and Settings 2 tabs.
 The top portion of the Settings 1 page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

Respiration parameter setup functions

All respiration setup functions take place in the Resp. page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp. lead</td>
<td>I, II (default)</td>
<td>Selects the lead for respiration monitoring.</td>
</tr>
<tr>
<td>Relearn</td>
<td>None</td>
<td>Initiates a relearning of the respiration signal.</td>
</tr>
<tr>
<td>Mode</td>
<td>Auto (default), Manual (see page 227 for more details).</td>
<td>Determines the processing mode for the breath-related impedance change.</td>
</tr>
<tr>
<td>Size [%]</td>
<td>10 % to 100 % (in 10 % increments) – default: 50 %</td>
<td>Adjusts the waveform size and/or breath detection threshold, according to the selected respiration setting.</td>
</tr>
</tbody>
</table>
 - Auto mode – Waveform size only, without affecting the breath-detection threshold.
Impedance respiration (AFi)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp. marker</td>
<td>– On</td>
<td>Superimposes a vertical line on the respiration waveform when a breath is detected (see page 226).</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>Resp. monitoring</td>
<td>– On (default in neonatal mode)</td>
<td>Activates/deactivates respiration monitoring.</td>
</tr>
<tr>
<td></td>
<td>– Off (default in adult/pediatric mode)</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue, purple, orange, white (default).</td>
<td>Determines the color of the waveforms, parameter labels, and values.</td>
</tr>
</tbody>
</table>

Settings 2 page

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coincidence detect</td>
<td>– On</td>
<td>Determines whether or not you are alerted when the respiratory rate is within 20% of the heart rate, which is an indication that the M540 is counting heart beats as respiration.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>RRi apnea time [s]</td>
<td>Off, 10, 15 (default), 20, 25, 30 seconds</td>
<td>Determines how long an apnea has to last before an alarm is triggered.</td>
</tr>
<tr>
<td>Apnea archive</td>
<td>– Off</td>
<td>Determines what happens in response to an apnea.</td>
</tr>
<tr>
<td></td>
<td>– Str./Rec. – a recording and an event storage is triggered automatically in response to an apnea.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Store (default) – a waveform segment is stored in response to an apnea.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Record – a recording is triggered automatically in response to an apnea.</td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank.
Overview of SpO2 and Pulse CO-Ox monitoring .. 232
Supported parameters ... 232

SpO2 and Pulse CO-Ox precautions .. 234

Connecting the Masimo SET MCable ... 236

Connecting the Masimo rainbow SET MCable 237

Patient preparation ... 238
Applying the sensor ... 238

SpO2 and Pulse CO-Ox display ... 239

Reviewing the SpO2 and Pulse CO-Ox parameters 242

Accessing the SpO2 settings ... 243

SpO2 parameter setup functions .. 244

Masimo rainbow SET Pulse CO-Ox parameter setup functions 246

Password-protected Masimo rainbow SET setup functions 249
Overview of SpO2 and Pulse CO-Ox monitoring

SpO2 and Pulse CO-Ox monitoring is only possible with the corresponding MCable. The following hardware is available from Masimo for monitoring SpO2 and Pulse CO-Ox parameters.

- Infinity MCable – Masimo SET (Masimo SET MCable)
- Infinity MCable – Masimo rainbow SET (Masimo rainbow SET MCable)

The values and the waveform are displayed on the M540 and on the Cockpit.

The Masimo SET MCable and Infinity MCable – Masimo rainbow SET support motion tolerant pulse oximetry using Signal Extraction Technology (SET). This technology enhances the quality of SpO2 monitoring and also measures the percentage of functional hemoglobin saturated with oxygen (%SpO2) in the arterial blood of the patient accurately and effectively.

A sensor applied to the patient measures the absorption levels of red and infrared light. The Masimo SET MCable or Masimo rainbow SET MCable uses the difference between the two measurements to calculate the percentage of saturated hemoglobin (SpO2). Because light absorption varies with blood volume and blood volume varies with pulse rate, both types of Masimo SET MCable can also derive a pulse rate (PLS).

In addition, the Masimo SET MCable also provides a perfusion index (PI) value. PI is the ratio of the pulsatile blood flow to the non-pulsatile blood flow in peripheral tissue. The PI value provides information regarding the perfusion status of the selected application site. This provides a means to select the most optimal site.

The Infinity MCable – Masimo rainbow SET measures additional parameters that continuously and non-invasively measure blood constituents.

SpO2 and Pulse CO-Ox measurements are for adult, pediatric, and neonatal patients (with the following exceptions).

NOTE

The Masimo rainbow SET MCable parameters SpHb and SpOC are not approved for neonatal monitoring.

NOTE

Information about wavelength range may be useful during photodynamic therapy. For details, see the technical data chapter of the instructions for use Infinity Acute Care System – Infinity M540.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 SpO2 functions. The SpO2 monitoring functions are configurable in the parameter-specific setup page (see page 244).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 470.

NOTE

This device is covered under one or more of the following USA patents: 5,758,644, 6,011,986, 6,699,194, 7,214,986, 7,254,433, 7,530,955 and other applicable patents listed at: www.masimo.com/patents.htm

Supported parameters

The parameters SpO2, PLS, and PI are available and displayed regardless of which Masimo sensor and which Masimo SET MCable is being used.

The availability of additional Masimo rainbow SET parameters depends on the sensor type that is connected and which parameters are activated on the Masimo rainbow SET MCable.
SpO2 and Pulse CO-Ox monitoring with Masimo SET MCable

Standard parameter set
The Infinity MCable – Masimo SET and the Masimo rainbow SET MCable always support the following parameters:

- Functional oxygen saturation (SpO2). The unit of measure is %.
- Pulse rate (PLS). The unit of measure is beats/min.
- Perfusion index (PI) which indicates the arterial pulse signal strength. The measurement is 0-1.

Expanded parameter set
In addition to the above standard parameters, the Masimo rainbow SET MCable provides the following additional optional parameters:

- Total hemoglobin (SpHb) measures the total hemoglobin levels in arterial or venous blood. The unit of measure is selectable (see page 418).
- Total oxygen content (SpOC) measures the total blood oxygen content; this value is calculated from the SpHb and the SpO2 values. The unit of measure is mL/dL.
- Pleth variability index (PVI) measures peripheral perfusion changes secondary to respiration or the PI amplitude over a respiration. PVI may be closely related to intrathoracic pressure changes, circulating blood volume and vascular tone. The unit of measure is %.
- Carboxyhemoglobin saturation (SpCO) measures the amount of carbon monoxide that is bound to hemoglobin. The unit of measure is %.
- Methemoglobin saturation (SpMet) measures the methemoglobin concentration in arterial blood. The unit of measure is %.

Various sensors are available for the Masimo rainbow SET MCable. The availability of the parameters depends on the selected sensor type. Each sensor provides certain parameters which must also be activated on the Masimo rainbow SET MCable.

- CO SpO2 sensor; this type of sensor provides the following parameters: SpO2, PLS, PI, SpCO, SpMet, PVI.
- M-LNCS sensor; this type of sensor provides the following parameters: SpO2, PLS, PI.
- Hb sensor; this type of sensor provides the following parameters: SpO2, PLS, PI, SpHb, SpOC, SpMet, PVI.

NOTE
A color band on the Masimo rainbow SET MCable indicates which parameters are activated on the MCable. If an MCable does not have a label, the supported parameters are by default SpO2, PLS, and PI.

The following illustration shows the multi-color band which appears on the side of the Masimo rainbow SET MCable (see page 236 for more information).

If you connect a sensor but the parameter is not activated on the MCables, the parameter label appears in the parameter box without a value.
SpO₂ and Pulse CO-Ox precautions

SpO₂ monitoring is only possible with an SpO₂ MCable.

Interfering substances: Carboxyhemoglobin may erroneously increase measurement values. The level of increase is approximately equal to the amount of carboxyhemoglobin present. Dyes, or any substance containing dyes that change arterial pigmentation, may cause erroneous measurement values.

WARNING
High oxygen levels may predispose a premature infant to retrolental fibroplasia. If this is a consideration do NOT set the high alarm limit to 100 %, which is equivalent to switching the alarm off. Transcutaneous pO₂ monitoring is recommended for premature infants receiving supplemental oxygen.

WARNING
A pulse oximeter should not be used as an apnea monitor.

WARNING
Use only Masimo-specified sensors. Other sensors may not provide adequate protection against defibrillation and may put the patient at risk.

WARNING
A Pulse CO-Oximeter should be considered an early warning device. If a trend towards patient hypoxemia is observed, blood samples should be analyzed by laboratory instruments to completely understand the condition of the patient.

WARNING
The pulsations from an intra-aortic balloon support can elevate the pulse rate. Verify the pulse rate of the patient against the heart rate.

WARNING
Elevated levels of methemoglobin (MetHb) may lead to inaccurate SpO₂ and SpCO measurements.

WARNING
Elevated levels of total bilirubin may lead to inaccurate SpO₂, SpMet, SpCO, SpHb, and SpOC measurements.

WARNING
Motion artifact may lead to inaccurate SpMet, SpCO, SpHb, and SpOC measurements.

WARNING
Very low arterial oxygen saturation (SaO₂) levels may cause inaccurate SpCO and SpMet measurements.

WARNING
Hemoglobin synthesis disorders may cause erroneous SpHb readings.

WARNING
To reduce the hazard of burns during surgery, keep the sensor or transducer and their associated cables away from the surgical site, the electro-surgical unit return electrode, and earth ground.

WARNING
Inspect the application site every two to three hours to ensure skin quality and correct optical alignment. If the skin quality changes, move the sensor to another site. Change the application site at least every four hours. The misapplication of a pulse oximeter sensor with excessive pressure for prolonged periods can induce pressure injury.

CAUTION
Do not immerse the sensor or patient cable in any liquid. Moisture may present a safety risk.
CAUTION
When using the maximum sensitivity setting, the performance of the sensor off detection may be compromised. If the device is in this setting and the sensor becomes dislodged from the patient, the potential for false readings may occur due to environmental 'noise' such as light, vibration and excessive air movement. In addition, when a sensor becomes detached from a patient, it will have compromised protection against erroneous pulse rate and arterial saturation readings.

NOTE
A pulse oximeter can be used during defibrillation, but the readings may be inaccurate for up to 20 seconds.

NOTE
Possession or purchase of the Masimo SET MCable or the Masimo rainbow SET MCable does not convey any expressed or implied license to use the device with unauthorized sensors or cables which would, alone, or in combination with this device, fall within the scope of one or more of the patents relating to this device.

NOTE
Purchase of this device confers no express or implied license under any Masimo patent to use this instrument with any oximetry sensor that is not manufactured or licensed by Masimo. For a list of approved sensors, see the instructions for use Infinity Acute Care System – Accessories.

NOTE
Do not use a functional tester to assess the accuracy of a pulse oximeter probe or a pulse oximeter monitor. Since pulse oximeter measurements are statistically distributed, only about two-thirds of those measurements can be expected to fall within ±A rms of a CO-Oximeter's measured value.

NOTE
A functional tester can be used to measure the total error of a pulse oximeter monitor-probe system if a particular calibration curve has been independently demonstrated to be accurate for that system. The functional tester can then measure how accurately a particular pulse oximeter is in reproducing the calibration curve.
Connecting the Masimo SET MCable

The Masimo SET MCable connects directly to the M540. The logo on the MCable identifies if you are using a Masimo rainbow SET or a Masimo SET MCable.

To connect the Masimo SET MCable
1. Attach the MCable connector (B) to the blue SpO2 connector (A) of the M540.
2. Attach the intermediate cable (D or F) to the connector of the MCable (C).
3. Attach the appropriate Masimo LNCS sensor to the end of the intermediate cable (E or G) – see page 238 for more information.

– (A) SpO2 connector on the M540
– (B) MCable connector
– (C) MCable intermediate connector MCable (14-pin connector)
– (D or F) Intermediate cable connector to MCable
– (E or G) Intermediate cable connector to sensor
Connecting the Masimo rainbow SET MCable

The Masimo rainbow SET MCable connects directly to the M540. The logo on the MCable identifies if you are using a Masimo rainbow SET or a Masimo SET MCable.

A color band located on the side of the Masimo rainbow SET MCable indicates which parameters are activated.

- Fields appearing in color represent parameters that are already activated
- Fields with the letter 'X' denote parameters that are not activated
- Fields that appear empty denote parameters that might be activated later

A Masimo MCable can be mounted to the back of an M540 (see page 85).

To connect the Masimo rainbow SET MCable
1. Attach the MCable (B) to the blue SpO2 connector (A) of the M540.
2. Attach the intermediate cable (D, E) to the connector of the MCable (C).
3. Attach the appropriate Masimo sensor to the end of the intermediate cable (F). For detailed information on which sensors support which parameters, refer to the instructions for use Infinity Acute Care System – Monitoring Accessories.

A SpO2 connector on the M540
B MCable connector
C MCable (20-pin connector)
D Masimo rainbow SET intermediate cable (connector to MCable)
E LNCS intermediate cable (connector to MCable)
F Connector for various sensors
Patient preparation

The following tips provide optimal SpO2 monitoring results but must never replace hospital-approved practices or manufacturer’s recommendations.

The accuracy of SpO2 monitoring depends largely on the strength and quality of the SpO2 signal.

If a finger is used as a monitoring site, remove any nail polish. Cut the finger nails of the patient, if necessary.

The signal may vary due to the following conditions:

- Placement of a sensor that is too tight
- Patient experiences hypotension, severe vasoconstriction, severe anemia, or hypothermia
- Arterial occlusion proximal to the sensor
- Patient is in cardiac arrest or is in shock
- Bright light causing erratic measurement or missing values. Cover the sensor with opaque material if it is likely to be exposed to direct bright light.
- Significant levels of dysfunctional hemoglobins (HbCO or MetHb)
- Intravascular dyes such as indocyanine green or methylene blue
- Excessive patient movement
- Venous pulsations
- Placement of a sensor on an extremity with a blood pressure cuff, arterial catheter, or intravascular line

The message SpO2 Low Perfusion appears when the monitor detects low amplitude arterial pulsations. In this case, do the following:

1. Check the patient and treat if necessary.
2. Move the sensor to a site that is more adequately perfused.
3. Select maximum sensitivity mode.

Applying the sensor

If you are using a reusable sensor, make sure it is clean before applying it to the patient.

NOTE

Only use Masimo sensors with the Masimo SET MCable and the Masimo rainbow SET MCable. Read the instructions provided with the sensor for optimal application techniques and for safety information. Never use damaged sensors.

WARNING

Inspect the application site every two to three hours to ensure skin quality and correct optical alignment. If the skin quality changes, move the sensor to another site. Change the application site at least every four hours.
SpO2 and Pulse CO-Ox monitoring with Masimo SET MCable

To apply the sensor

1. Select the size and type of sensor that is best suited for your patient. Follow the recommendations of the manufacturer.

2. Position the sensor correctly and attach it to your patient.

3. Connect the sensor to the Masimo SET MCable or the Masimo rainbow SET MCable.

NOTE

After connecting the sensor, if the sensor-LED does not light up:
- observe the monitor for any message and act accordingly, or
- replace the sensor.

SpO2 and Pulse CO-Ox display

On the Cockpit, the SpO2 display consists of:
- SpO2 parameter box
- A user-configurable Pulse CO-Ox parameter box when a Masimo rainbow SET MCable with additional parameters activated is connected.
- SpO2 pulse plethysmogram waveform

NOTE

The pulse plethysmogram waveform is directly proportional to the strength of the pulse amplitude.

The following table lists the maximum times the M540 requires to report the parameter values after connecting the sensor to the MCable.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO2, PLS, PI</td>
<td>Up to 35 s</td>
</tr>
<tr>
<td>SpMet, PVI, SpCO</td>
<td>Up to 60 s</td>
</tr>
<tr>
<td>SpHb, SpOC</td>
<td>Up to 90 s</td>
</tr>
<tr>
<td>PVI</td>
<td>Up to 150 s</td>
</tr>
</tbody>
</table>
SpO₂ and Pulse CO-Ox monitoring with Masimo SET MCable

Masimo SET MCable parameter box

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

SpO₂ parameter box (Masimo SET MCable)
The SpO₂ parameter box contains the following elements:

A SpO₂ label
B Units of measure – can be activated/deactivated
C Sensitivity mode indicator (see page 244)
D PLS (pulse) label
E PLS value
F Perfusion index label
G Perfusion index value
H Alarm off symbol when alarms are deactivated. When alarms are activated, the alarm limits are displayed instead.

Pulse CO-Ox parameter box (Masimo rainbow SET MCable)
The Pulse CO-Ox parameter box appears in addition to the regular SpO₂ parameter box when a Masimo rainbow SET MCable is connected that supports parameters in addition to the standard parameter set (SpO₂, PLS, PI). The parameter content of the parameter box is configurable (see page 246).

The display of Pulse CO-Ox parameters (SpHb/SpHbv, SpOC, SpMet, PVI, SpCO) is affected by the following conditions:
- Blanks appear instead of parameter values if a sensor is connected but the parameter is not activated on the MCable.
- Asterisks (**) replace the parameter values under the following circumstances:
 - A parameter is activated but an incompatible sensor is connected
 - A parameter is activated but no sensor is connected
 - A technical failure exists (for example, an unplugged sensor)

NOTE
The alarm limits for SpO₂ are always visible at the Cockpit, the M540, the ICS, and on remote devices even if the setting **Alarm limits display** is deactivated (see page 406). For PLS, the limits area in the parameter box appears blank.

If SpO₂ and/or PLS alarms are deactivated, the usual symbol ☐ appears next to the parameter label.

I Message area for SpO₂ messages (see page 470)
J SpO₂ saturation value
K SpO₂ blip that pulsates with each detected pulse (only when the selected pulse tone source is SpO₂ – see page 244).
You can select up to three parameters to be displayed in the parameter box (see page 246). Units of measure appear next to the parameter label if applicable and can be activated/deactivated (see page 418).

NOTE
The parameter SpHb changes to SpHbv (if *Venous* was selected for the blood source setting *SpHb Cal* – see page 249).

The Pulse CO-Ox parameter box contains the following elements:

- A Parameter 1 Pulse CO-Ox label
- B Parameter 2 Pulse CO-Ox label
- C Upper/lower alarm limits or crossed triangle symbols when alarms are deactivated (for the parameters SpOC and PVI there are no alarm limits)
- D Parameter 3 Pulse CO-Ox label
- E Parameter 3 Pulse CO-Ox value
- F Parameter 2 Pulse CO-Ox value
- G Alarm off symbol when alarms are deactivated. When alarms are activated, the alarm limits are displayed instead.
- H Parameter 1 Pulse CO-Ox value
Reviewing the SpO₂ and Pulse CO-Ox parameters

When the Masimo rainbow SET MCable is connected, you can review the values and associated trends of the following parameters on one page. The mini-trend display is updated approximately every five seconds. If no Masimo rainbow SET parameter is activated on the Masimo rainbow SET MCable, only the parameter label but no trends appear.

The following diagram is an example of a *Show all* page.

A SpO₂ tab
B *Show all* sub tab
C *Duration* button to select the trend duration
D Display area showing parameter labels, values, trend scales, mini-trend and selected time intervals.

To access the SpO₂ and Pulse CO-Ox *Show all* screen

1. Select the CO-Ox parameter box to access the *Pulse CO-Ox* setup page directly.

 or

2. Select *Sensor parameters*... from the main menu bar > *SpO₂* horizontal tab to select the *Pulse CO-Ox* setup page.

3. Select the *Show all* tab.
Accessing the SpO2 settings

The following three setup pages are available for configuring Masimo SpO2 parameters:

- **SpO2** setup page for configuring general SpO2 parameters (Masimo rainbow SET MCable and Masimo SET MCable)
- **Pulse CO-Ox** setup page and the **Setup** page for configuring Masimo rainbow SET-specific settings.

To access the SpO2 Pulse CO-Ox pages

1. Select the SpO2/Pulse CO-Ox parameter box to select the respective page directly.
 or
2. Select **Sensor parameters...** from the main menu bar.
3. Select the horizontal **SpO2** tab to access the **SpO2 page**.
 or
 Select the **Pulse CO-Ox** tab to access the Masimo rainbow SET-specific setup page
 or
 the vertical **Setup** tab > enter the password to access the password-protected setup pages for the Masimo rainbow SET parameters (see page 249).

The top portion of the setup pages contain the **Auto set** and **Alarm** buttons for configuring the alarm functions (no acoustic and visual alarm signals for PI and SpOC). For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.
SpO2 parameter setup functions

General SpO2 setup functions take place in the SpO2 page (see page 243).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse tone volume</td>
<td>Off, 5 %, 10 % (default), 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 100 %</td>
<td>Sets the volume of the pulse tone.</td>
</tr>
<tr>
<td>Tone source</td>
<td>– ECG (default) – SpO2</td>
<td>Selects the source of the pulse tone which affects either the ECG or the SpO2 parameter box display (see page 239). For the SpO2 selection, the higher the pitch of the tone, the higher the SpO2 saturation percentage.</td>
</tr>
<tr>
<td>Waveform size [%]</td>
<td>10 %, 20 %, 30 %, 40 % (default), 50 %, 60 %, 70 %, 80 %, 90 %, 100 %</td>
<td>Sets the amplitude of the SpO2 waveforms. If the waveform height exceeds the display size of the channel, the waveform appears clipped (this does not affect the SpO2 signal processing).</td>
</tr>
<tr>
<td>FastSat mode</td>
<td>On, Off (default)</td>
<td>Allows rapid tracking of arterial oxygen saturation changes. When the Averaging time setting is set to 2 to 4s, the FastSat mode selection is ghosted.</td>
</tr>
<tr>
<td>Sensitivity mode</td>
<td>– Normal (default) – standard mode – APOD (adaptive probe off detection) – the least sensitive mode for detecting a reading on patients with low perfusion. Provides the best detection for detached sensors. This mode is useful for patients at particular risk for sensors becoming detached such as children or patients who are restless. – Max – provides maximum sensitivity for poor signals</td>
<td>Determines the level of detection sensitivity. The message APOD or Max appear in the SpO2 parameter box when the corresponding sensitivity setting is selected. When the setting Normal is selected, no message appears in the parameter box.</td>
</tr>
</tbody>
</table>
Instructions for use – Infinity Acute Care System – Monitoring Applications

SpO2 and Pulse CO-Ox monitoring with Masimo SET MCable

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Averaging time** | 2 to 4, 4 to 6, 8 (default), 10, 12, 14, 16 s | Determines how quickly the reported SpO2 value responds to changes in the patient’s oxygen saturation.
A longer averaging time provides a more accurate result. However, in clinical situations where rapid physiological changes have to be monitored, use a shorter averaging time. |
| **SpO2 desat alarm** | **On** (default), **Off** | This feature is only available in neonatal mode. The alarm priority is upgraded to high-priority if the SpO2 value falls more than 10 % below the lower SpO2 alarm limit. |
| **Color** | Red, green, blue, yellow, light blue, purple, orange, white (default). | Determines the color of the waveforms and parameter labels and values. |

NOTE
The password-protected alarm setting **SpO2 sensor off** provides additional SpO2 alarm configuration.
Masimo rainbow SET Pulse CO-Ox parameter setup functions

General Masimo rainbow SET SpO2 setup functions take place in the *Pulse CO-Ox* page. To access this setup page, see page 243. Additional password-protected functions are available (see page 249).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter display (left button)</td>
<td>SpHb<sup>1</sup> (default)</td>
<td>Selects the parameter for the parameter 1 location in the Pulse CO-Ox parameter box. The associated parameter label and value have the largest font.</td>
</tr>
<tr>
<td></td>
<td>SpOC</td>
<td>With an Hb sensor, the default parameter is SpHb. With a CO-sensor, the default parameter for the parameter 1 location in the parameter box changes automatically to SpCO.</td>
</tr>
<tr>
<td></td>
<td>PVI</td>
<td>Changes to the parameter selection are retained if the same sensor is disconnected and then reconnected. The parameter selection changes to the default selection, if another Masimo rainbow SET sensor type is connected.</td>
</tr>
<tr>
<td></td>
<td>SpCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SpMet</td>
<td></td>
</tr>
</tbody>
</table>

¹If the venous blood source was selected for *SpHb Cal*, the parameter label changes from SpHb (arterial blood source) to SpHbv.
Parameter display

(middle button)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– SpHb ¹</td>
<td>Selects the parameter for the parameter 2 location in the Pulse CO-Ox parameter box.</td>
</tr>
<tr>
<td></td>
<td>– SpOC (default)</td>
<td>With an Hb sensor, the default parameter is SpOC. With a CO-sensor, the default parameter for the parameter 2 location in the parameter box changes automatically to SpMet.</td>
</tr>
<tr>
<td></td>
<td>– PVI</td>
<td>Changes to the parameter selection are retained if the same sensor is disconnected and then reconnected. The parameter selection changes to the default selection, if another Masimo rainbow SET sensor type is connected.</td>
</tr>
<tr>
<td></td>
<td>– SpCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– SpMet</td>
<td></td>
</tr>
</tbody>
</table>

(right button)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– SpHb ¹</td>
<td>Selects the parameter for the parameter 3 location in the Pulse CO-Ox parameter box.</td>
</tr>
<tr>
<td></td>
<td>– SpOC</td>
<td>PVI is the default parameter for the parameter 3 location in the parameter box for both CO and Hb sensors.</td>
</tr>
<tr>
<td></td>
<td>– PVI (default)</td>
<td>Changes to the parameter selection are retained if the same sensor is disconnected and then reconnected. The parameter selection changes to the default selection, if another Masimo rainbow SET sensor type is connected.</td>
</tr>
<tr>
<td></td>
<td>– SpMet</td>
<td></td>
</tr>
</tbody>
</table>

¹) Note: if the venous blood source was selected for *SpHb Cal*, the parameter label changes from *SpHb* (arterial blood source) to *SpHbv*.
<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| **SpHb Averaging time** | For SpHb ¹) the selections are:
 - **Long** – approximately 6 minutes
 - **Medium** (default) – approximately 3 minutes
 - **Short** – approximately 1 minute | Determines how responsive the monitor is to rapid physiological changes while tracking blood hemoglobin values.
A longer averaging time provides a more accurate result. However, in clinical situations where rapid physiological changes have to be monitored, use a shorter averaging time. |
| **Pulse CO-Ox mini trend**| – SpHb ¹) (default)
 – SpCO
 – SpOC
 – SpMet
 – PVI (SpCO is the default when a CO sensor is used) | Selects the parameter to be included in the mini-trend display. |
| **Color** | Red, green, blue, yellow, light blue, purple, orange, white (default). | Determines the color of the parameter labels and values. |

¹) if the venous blood source was selected for SpHb Cal, the parameter label changes from SpHb (arterial blood source) to SpHbv.
Password-protected Masimo rainbow SET setup functions

Additional Masimo rainbow SET setup functions take place in the Setup page which is protected by a clinical password. To access this setup page, see page 243.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| SpHb Cal | – Arterial (default)
 – Venous | Selects the blood sampling source which is used to calculate the SpHb value.
 The SpHb value changes to SpHbv when the SpHb Cal setting Venous is selected. |
| PVI averaging time | – Short
 – Long (default) | Determines how responsive the monitor is to rapid physiological changes while tracking pleth variability index.
 A longer averaging time provides a more accurate result. However, in clinical situations where rapid physiological changes have to be monitored, use a shorter averaging time. |
SpO2 and pulse rate with Nellcor OxiMax MCable

Overview of SpO2 monitoring 252
Supported parameters 252

SpO2 precautions 253

Connecting the Nellcor OxiMax MCable 254

Patient preparation for SpO2 monitoring 255
Applying the sensor 256

SpO2 display 257
SpO2 parameter box 257

Accessing the SpO2 settings 258

SpO2 parameter setup functions 258
Overview of SpO2 monitoring

SpO2 monitoring is only possible with an SpO2 MCable. The M540 uses the Infinity MCable – Nellcor OxiMax (Nellcor OxiMax MCable) to measure the percentage of functional hemoglobin saturated with oxygen (%SpO2) and derive a pulse rate (PLS) continuously. The values are displayed on the M540 and the Cockpit.

A sensor applied to the patient measures the absorption levels of red and infrared light. The Nellcor OxiMax MCable uses the difference between the two measurements to calculate the percentage of saturated hemoglobin (SpO2). Because light absorption varies with blood volume and blood volume varies with pulse rate, the Nellcor OxiMax MCable can also derive a pulse rate (PLS).

SpO2 measurements are for adult, pediatric and neonatal patients.

NOTE
Information about wavelength range may be useful during photodynamic therapy. For details, see the technical data chapter of the instructions for use Infinity Acute Care System – Infinity M540.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 SpO2 functions.

The SpO2 monitoring functions are configurable in the parameter-specific setup page (see page page 258).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 470.

Supported parameters

- Saturation (SpO2)
- Pulse rate (PLS)
SpO2 precautions

Interfering substances: Carboxyhemoglobin may erroneously increase measurement values. The level of increase is approximately equal to the amount of carboxyhemoglobin present. Dyes, or any substance containing dyes that change arterial pigmentation may cause erroneous measurement values.

WARNING
High oxygen levels may predispose a premature infant to retrolental fibroplasia. If this is a consideration do NOT set the high alarm limit to 100 %, which is equivalent to switching the alarm off. Transcutaneous pO2 monitoring is recommended for premature infants receiving supplemental oxygen.

WARNING
A pulse oximeter should not be used as an apnea monitor.

WARNING
Use only Nellcor and Dräger-specified sensors. Other sensors may not provide adequate protection against defibrillation and may put the patient at risk.

WARNING
A pulse oximeter should be considered an early warning device. If a trend towards patient hypoxemia is observed, blood samples should be analyzed by laboratory instruments to completely understand the condition of the patient.

WARNING
The pulsations from an intra-aortic balloon support can elevate the pulse rate. Verify the pulse rate of the patient against the heart rate.

WARNING
To reduce the hazard of burns during surgery, keep the sensor or transducer and their associated cables away from the surgical site, the electro-surgical unit return electrode, and earth ground.

WARNING
Inspect the application site every two to three hours to ensure skin quality and correct optical alignment. If the skin quality changes, move the sensor to another site. Change the application site at least every four hours.

WARNING
Patient injury can occur if the oximeter is applied wrong or if it is subject to excessive pressure over a prolonged period of time.

CAUTION
Do not immerse the sensor or patient cable in any liquid. Moisture may present a safety risk.

NOTE
A pulse oximeter can be used during defibrillation, but the readings may be inaccurate for up to 20 seconds.

NOTE
Purchase of this instrument confers no express or implied license under any Nellcor patent to use this instrument with any oximetry sensor that is not manufactured or licensed by Nellcor. For a list of approved sensors, see the instructions for use *Infinity Acute Care System – Accessories*.
Connecting the Nellcor OxiMax MCable

The Nellcor OxiMax MCable cable connects directly to the M540.

A SpO2 connector on the M540
B MCable connector
C MCable intermediate connector (14-pin connector)
D Intermediate cable connector to MCable
E Intermediate cable connector to sensor

To connect the Nellcor OxiMax MCable
1. Connect the Nellcor OxiMax MCable connector (B) to the blue SpO2 connector (A) of the M540.
2. Attach the intermediate cable (D) to the connector of the Nellcor OxiMax MCable (C).
3. Attach the appropriate sensor cable to the end of the intermediate cable (E) – see page 256 for more information.

NOTE
Do not use a functional tester to assess the accuracy of a pulse oximeter probe or a pulse oximeter monitor. Since pulse oximeter measurements are statistically distributed, only about two-thirds of those measurements can be expected to fall within ±A rms of a CO-Oximeter’s measured value.

NOTE
A functional tester can be used to measure the total error of a pulse oximeter monitor-probe system if a particular calibration curve has been independently demonstrated to be accurate for that system. The functional tester can then measure how accurately a particular pulse oximeter is in reproducing the calibration curve.
Patient preparation for SpO2 monitoring

The following tips provide optimal SpO2 monitoring results but must never replace hospital-approved practices or manufacturer’s recommendations.

The accuracy of SpO2 monitoring depends largely on the strength and quality of the SpO2 signal.

If a finger is used as a monitoring site, remove any nail polish. Cut the finger nails of the patient, if necessary, for better sensor placement.

Pulses may be counted erroneously due to the following conditions:

- Placement of a sensor that is too tight
- Patient experiences hypotension, severe vasoconstriction, severe anemia, or hypothermia
- Arterial occlusion proximal to the sensor
- Patient is in cardiac arrest or is in shock
- Bright light causing erratic measurement or missing values. Cover the sensor with opaque material if it is likely to be exposed to direct bright light.
- Significant levels of dysfunctional hemoglokins (HbCO or MetHb)
- Intravascular dyes such as indocyanine green or methylene blue
- Excessive patient movement
- Venous pulsations
- Placement of a sensor on an extremity with a blood pressure cuff, arterial catheter, or intravascular line
Applying the sensor

If you are using a reusable sensor, make sure it is clean before applying it to the patient. Follow the recommendations of the manufacturer.

WARNING
Inspect the application site every two to three hours to ensure skin quality and correct optical alignment. If the skin quality changes, move the sensor to another site. Change the application site at least every four hours.

NOTE
Read the instructions provided with the sensor for optimal application techniques and for safety information. Never use damaged sensors. Doing so may compromise performance.

To apply the sensor

1. Select the size and type of sensor that is best suited for your patient. Follow the recommendations of the manufacturer.
2. Position the sensor correctly and attach it to your patient.

3. Connect the sensor to the Nellcor OxiMax MCable.

NOTE
After connecting the sensor, do the following if the sensor-LED does not light up:
- Observe the monitor for any message and act accordingly
- Replace the sensor.
SpO2 display

On the Cockpit, the SpO2 display consists of:

- SpO2 parameter box
- SpO2 pulse plethysmogram waveform

SpO2 parameter box

The diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 252.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

NOTE

The pulse plethysmogram waveform is directly proportional to the strength of the pulse amplitude.

The SpO2 parameter box contains the following elements:

A SpO2 label
B Units of measure – can be activated/deactivated
C PLS (pulse) label
D PLS value
E Upper/lower alarm limits or crossed triangle symbols when alarms are deactivated
F Alarm off symbol when alarms are deactivated. When alarms are activated, the alarm limits are displayed instead.
G Message area for SpO2 messages
H SpO2 saturation value
I SpO2 blip that pulsates with each detected pulse (only when the selected pulse tone source is SpO2 – see page 258).

NOTE

The alarm limits for SpO2 remain visible at the Cockpit, the M540, on the ICS, and on remote devices. Even though the Alarm limits display setting is deactivated (see page 406), for PLS, the limits area in the parameter box appears blank.

If SpO2 and/or PLS alarms are deactivated, the usual symbol appears next to the parameter label.
Accessing the SpO2 settings

1. Select the SpO2 parameter box to select the SpO2 page directly.
 or
 Select Sensor parameters... from the main menu bar.

2. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

SpO2 parameter setup functions

All SpO2 setup functions take place in the SpO2 page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse tone volume</td>
<td>Off, 5 %, 10 % (default), 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 100 %</td>
<td>Sets the volume of the pulse tone.</td>
</tr>
<tr>
<td>Tone source</td>
<td>ECG (default), SpO2</td>
<td>Selects the source of the pulse tone which affects both the ECG and the SpO2 parameter box display (see page 257). For the SpO2 selection, the higher the pitch of the tone, the higher the SpO2 saturation percentage.</td>
</tr>
<tr>
<td>Waveform size [%]</td>
<td>10 %, 20 %, 30 %, 40 % (default), 50 %, 60 %, 70 %, 80 %, 90 %, 100 %</td>
<td>Sets the amplitude of the SpO2 waveforms. If the waveform height exceeds the display size of the channel, the waveform appears clipped (without affecting the SpO2 signal processing).</td>
</tr>
</tbody>
</table>
SpO2 and pulse rate with Nellcor OxiMax MCable

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Response mode** | – **Normal** (default) – up to 90 % change within 5 to 7 seconds
– **Fast** – up to 90 % change within 2 to 4 seconds | Establishes the frequency the oximeter uses to calculate, record, and display SpO2 saturation levels:
– Fast mode responds to changes in blood oxygen saturation levels in 2 to 4 seconds when calculating %SpO2.
– Normal mode responds to changes in blood oxygen saturation in 5 to 7 seconds when calculating %SpO2. |
| **SatSeconds alarm**| **Off** (default), 10, 25, 50, 100 SatSeconds | This selection does the following:
– Analyzes desaturation events by multiplying their duration (seconds) by the number of percentage points the patient exceeds the alarm limit.
– Eliminates nuisance alarms caused by brief and numerous violations of lower and upper alarm limits.
– Overrides the alarm validation setting (see page 405) and the SpO2 high priority desaturation alarm for neonatal patients. |
| **SpO2 desat alarm**| **On** (default), **Off** | This feature is only available in neonatal mode and only if the **SatSeconds alarm** function is set to **Off**. The alarm priority is upgraded to high priority if the SpO2 value falls more than 10 % below the lower SpO2 alarm limit. This feature is automatically activated whenever neonatal mode is activated. |
| **Color** | Red, green, blue, yellow, light blue, purple, orange, white (default) | Determines the color of the waveforms and parameter labels and values. |

NOTE
The password-protected alarm setting SpO2 check sensor provides additional SpO2 alarm configuration. For more detailed information see page 105.
Temperature

Overview of temperature monitoring 262
Connecting the temperature sensors 262
Connecting the temperature sensors to the
M540 . 263
Connecting the temperature sensors to the
hemodynamic pods . 264
Temperature display 265
Temperature parameter box 265
Accessing the temperature settings 266
Temperature parameter setup functions 266
Overview of temperature monitoring

The M540 measures and displays the following temperature values and relays them to the Cockpit for display:
- Surface body temperature
- Core temperature

Temperature monitoring is intended for adult, pediatric, and neonatal patients. All clinical thermometer readings are a direct measurement.

The temperature monitoring functions are configurable in the parameter-specific setup page (see page 266).

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 temperature functions.

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 478.

Supported parameters
- Ta/T1a: absolute temperature values
- Tb/T1b: absolute temperature values
- ΔT/ΔT1: delta temperature values

Connecting the temperature sensors

You can connect temperature sensors directly to the M540 or to one of the following hemodynamic pods:
- MPod – QuadHemo
- Hemo4 pod
- Hemo2 pod

NOTE
The temperature functions and associated probes should be calibrated every two years by qualified personnel to maintain an accuracy of ±0.1 °C (±0.2 °F).
Connecting the temperature sensors to the M540

You can connect a single sensor or two sensors to the M540 directly using the dual temperature adapter cable. The dual temperature sensor cable monitors two temperatures simultaneously.

To connect two-temperature sensors

1. Connect the temperature sensors (D) to the connectors (C) of the dual temperature adapter cable.

2. Connect the connector (B) of the dual temperature adapter cable to the M540 Temp/Aux connector (A).

To connect a single temperature sensor

- Connect a temperature sensor (E) directly to the M540 Temp/Aux connector (A).

A M540 Temp/Aux connector
B Dual temperature adapter cable
C Dual temperature adapter cable connectors
D Single temperature sensor
E Temperature sensors connecting directly to the M540
Connecting the temperature sensors to the hemodynamic pods

You can connect a single temperature sensor to the following devices:

- Hemo4 pod
- Hemo2 pod
- MPod – QuadHemo

To connect temperature cables to the MPod – QuadHemo

1. Connect the temperature sensor connector (A) to the MPod – QuadHemo Temp B connector (C) or Temp A connector (D).

2. Connect the connection cable to the monitor connector (B) of the MPod – QuadHemo and to the gray hemo connector on the M540.

To connect temperature cables to the Hemo2 pod and the Hemo4 pod

1. Connect the temperature sensor connectors (E) to the Temp A connector (H) and/or the Temp B connector (G) of the Hemo4 pod or the Hemo2 pod.

2. Connect the connection cable to the monitor connector (F) of the Hemo2 pod/Hemo4 pod and to the gray hemo connector on the M540 (see page 263).
Temperature display

On the Cockpit, the temperature display consists of a parameter box. You can select which temperature values are displayed in the parameter box (see page 266).

When the dual temperature cable is connected, the parameter box displays either the corresponding temperature values (for example, Ta and Tb) or one direct and one calculated delta value (for example, Ta and ΔT). The symbol ΔT represents the absolute value of the difference between the two direct values.

Any temperature values originating from the MPod – QuadHemo, the Hemo2 pod, or the Hemo4 pod are labeled T1a, T1b, and ΔT1. Any temperature values originating from a single or dual temperature cable that are connected to the M540 temperature connector are labeled Ta, Tb, and ΔT.

When only a single temperature sensor is connected, only one temperature value is displayed. The values for the second temperature appear blank.

Temperature parameter box

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Temperature parameter setup functions" on page 266. Temperature values in parameter boxes may display with a decimal point instead of a comma.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.
Temperature

Accessing the temperature settings

- Select the temperature parameter box to select the Temp. page directly.
- or

1 Select Sensor parameters... from the main menu bar.

2 Select the Temp. (Temp. 1) tab to access the Temp. page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: ➔ symbol and the display filter button.

The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

Temperature parameter setup functions

All temperature setup functions take place in the Temp./Temp. 1 pages (see page 266).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| Parameters | – Ta - Tb (T1a - T1b)
– Ta - ΔT (T1a - ΔT1) | Selects which parameters are displayed in the parameter box. |
| Color | Red, green, blue, yellow, light blue, purple, orange, white (default). | Determines the color of the parameter labels and values. |
Non-invasive blood pressure (NIBP)

Overview of non-invasive blood pressure monitoring 268
Supported parameters 268

Non-invasive blood pressure precautions 269

Connecting the non-invasive blood pressure hose and cuff 270

Patient preparation for non-invasive blood pressure monitoring 271
Applying the non-invasive blood pressure cuff 271

Non-invasive blood pressure display .. 272
Non-invasive blood pressure parameter boxes 272
Continuous mode 273
Interval mode .. 273

Non-invasive blood pressure measurement modes 274
Single measurement mode 274
Interval measurements mode 274

Venous stasis ... 277
Activating or deactivating venous stasis 277

Accessing the non-invasive blood pressure settings 278

Non-invasive blood pressure parameter setup functions 278
Overview of non-invasive blood pressure monitoring

The M540 uses the oscillometric method to acquire and process non-invasive blood pressure (NIBP) signals and sends the results to the Cockpit for display. Blood pressure measurements are determined by the oscillometric method and are equivalent to those obtained by intra-arterial methods, within the limits prescribed by the Association for Advancement of Medical Instrumentation, Electronic Automated Sphygmomanometers.

The M540 inflates and then deflates a pneumatic cuff wrapped around the patient’s arm or leg. A hose connects the cuff to the monitor which determines the systolic, diastolic and mean pressures for adult, pediatric and neonatal patients.

- To protect the patient from excessive inflation limits, the blood pressure cuff automatically deflates when a measurement exceeds 2 minutes in adult and pediatric mode
- A measurement exceeds 90 seconds in neonatal mode

NOTE

The non-invasive blood pressure functionality should be calibrated every two years by technically qualified personnel as described in the Service manual.

Refer to the instructions for use *Infinity Acute Care System – Infinity M540* for a detailed description of the M540 non-invasive blood pressure functions.

The non-invasive blood pressure monitoring functions are configurable in the parameter-specific setup page (see page 278).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 475.

Supported parameters

- NIBP S – non-invasive pressure, systolic value
- NIBP D – non-invasive pressure, diastolic value
- NIBP M – non-invasive pressure, mean value
Non-invasive blood pressure precautions

WARNING
Rapid, prolonged cycling of non-invasive pressure measurements have on occasion been associated with petechia, ischemia, purpura, or neuropathy. Make sure that the cuff is properly attached and check the cuff site regularly to prevent the cuff pressure from impeding the blood flow.

WARNING
Obstructions may cause the cuff to inflate and deflate improperly and result in inaccurate measurement values. Check the hose and cuff for damage and dirt. Do not allow the hose and cuff to come in contact with fluids, and make sure that they are not compressed or kinked.

WARNING
Do not place the cuff on injured or breached skin because cuff compression could further damage the tissue.

WARNING
Do not place the cuff on a limb with either an intra-arterial line or a vascular prosthesis because cuff compression will impede perfusion.

WARNING
Do not perform a blood pressure measurement on the upper arm of the side of a mastectomy.

WARNING
When measuring non-invasive blood pressure and another parameter simultaneously on the same limb, the measurement of the other parameter can be temporarily interrupted.

WARNING
Accurate non-invasive blood pressure measurements depend on the correct size and type of the blood pressure cuff in relation to the patient’s arm circumference. The wrong sized cuff, or cuffs outside the range or size manufactured by Dräger, can cause inaccurate measurements. Use only Dräger approved cuffs and make sure that the correct size is used for each patient.

WARNING
To reduce the possibility of pumping air into the patient’s blood vessels, never connect pneumatic connectors to an intravascular system.

WARNING
Before monitoring neonates and infants:
– Select the correct cuff size and hose.
– Select the neonatal or pediatric patient category, if not already selected. This provides the appropriate inflation for neonates, infants, and pediatric patients and protects neonatal patients from excessive cuff pressures and longer cuff cycle time.
Failure to follow the above actions could result in extreme discomfort, petechiae, ischemia, purpura, or neuropathy.

NOTE
The effectiveness of non-invasive blood pressure monitoring has not been established in pregnant patients, including pre-eclamptic patients.
Connecting the non-invasive blood pressure hose and cuff

The following diagram shows where the non-invasive blood pressure hose connects to the non-invasive blood pressure hose connector (A) on the side of the M540.

A Non-invasive blood pressure connector on the M540
B Non-invasive blood pressure hose
C Blood pressure cuff

To connect the hose and cuff

1. Select a non-invasive blood pressure cuff size that is appropriate for the patient.
2. Connect the non-invasive blood pressure cuff tubing (C) to the hose (B).
3. Connect the non-invasive blood pressure hose (B) to the non-invasive blood pressure connector (A) of the M540.

NOTE
The accuracy of the oscillometric blood pressure signal can decrease (up to loss of measurement) under the following conditions:
- weak pulses
- irregular pulses
- patient movement artifacts
- tremor artifacts
- respiratory artifacts
- pulses generated from a ventricular assist device

NOTE
A systolic blood pressure higher than the current high inflation limit may trigger a message that the non-invasive blood pressure inflation limit is low. When this message appears, manually check the blood pressure of the patient.
Patient preparation for non-invasive blood pressure monitoring

The following tips provide optimal non-invasive blood pressure monitoring results, but must never replace hospital-approved practices or manufacturer’s recommendations.

Accurate non-invasive blood pressure measurements depend on the correct size and type of the blood pressure cuff in relation to the arm circumference of the patient. The wrong sized cuffs, or cuffs outside the range or size manufactured by Dräger, can cause inaccurate measurements. Use only Dräger approved cuffs and make sure that the correct size is used for each patient.

Applying the non-invasive blood pressure cuff

Weak or irregular pulses, patient movement, tremors, or respiratory artifacts can affect the accuracy of non-invasive blood pressure measurements and even cause them to fail. Before applying the cuff, read the non-invasive blood pressure precautions.

We recommend that you do not apply the cuff on a limb that is already used for other measurements. Make sure that other patient connections do not interfere with each other.

The following diagram depicts a typical Dräger cuff.

![Diagram of a Dräger cuff with the following labels:
A: Index line
B: Artery marker
C: Range labels
D: Size indicator](image)

Correct patient positioning

For a patient with hypertension who is not in a lying position, perform the resting blood pressure measurement as follows:

- Place the patient in a comfortable seated position.
- Make sure the legs are not crossed.
- Make sure the feet are flat on the floor.
- Make sure the patient is leaned back and arms are at rest.
- Apply the center of the cuff at the level of the right atrium.
- The patient should be relaxed, if possible, and should not talk during measurement.
- Wait for 5 minutes, if possible, before performing the first measurement.

NOTE

The accuracy of the blood pressure measurement can be affected by the following conditions:

- The measuring site, the lying position, patient movement, and the physiological condition of the patient.
- Cuffs that are stored or used outside of the specified environmental conditions. For acceptable conditions, refer to the IACS M540 IFU, Technical Data chapter.

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
To apply the cuff

Before applying the cuff to the patient, read and understand the manufacturer’s Warnings in the Instructions for Use for the cuff.

1. Place the cuff 2 to 5 cm (1 to 2 inches) above the elbow (or around the middle of the thigh). Place the cuff label "this side to patient" against the skin.

2. Place the artery marker (B) over the artery pointing to the hand or the foot. Place the cuff label 'index' (A) so that it falls within the range labels (C) to ensure the correct fit. If the cuff does not fall within the indicated range, select a cuff that better accommodates the limb circumference.

3. Wrap the deflated cuff snug around the limb without impeding blood flow. Make sure there is a finger’s width of space between the cuff and the upper arm or thigh before fastening it.

Non-invasive blood pressure display

On the Cockpit, the non-invasive blood pressure display consists of a parameter box.

When a measurement is in progress, the background of the lower part of the parameter box turns white.

During low systolic or diastolic pulse amplitudes or significant motion artifacts, the parameter box may only display a mean value. If the M540 is in venous stasis mode, the cuff pressure and the label Venous stasis appears in the non-invasive blood pressure parameter box.

If you cannot apply the cuff at heart level, adjust the displayed systolic and diastolic non-invasive blood pressure values as follows: add 8 mmHg (1.1 kPa) for each 10 cm (4 inches) above the heart; subtract 8 mmHg (1.1 kPa) – for each 10 cm (4 inches) below the heart.

Non-invasive blood pressure parameter boxes

NOTE

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see “Parameter boxes” on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter “Problem solving” on page 455.

The appearance of non-invasive blood pressure parameter boxes also depends on the selected non-invasive blood pressure mode.
Continuous mode

The following diagram shows a parameter box when the continuous non-invasive blood pressure mode is selected (see page 276).

Interval mode

The following diagram shows a parameter box when the interval mode is selected (see page 275 for more information).

A NIBP parameter label
B Unit of measure (can be activated/deactivated)
C Time since last non-invasive blood pressure measurement
D Mean pressure value
E Alarm limits or crossed triangle symbols when alarms are deactivated
F Time remaining before continuous mode is terminated
G Label Cont. mode
H Unit of measure
I Inflation pressure value
J Label Inflation pressure
K Systolic/diastolic pressure value

A NIBP parameter label
B Unit of measure (can be activated/deactivated)
C Time since last non-invasive blood pressure measurement
D Last mean pressure value
E Alarm limits or crossed triangle symbols when alarms are deactivated
F Selected inflation interval (see page 278)
G Inflation pressure value or progress bar
H Label auto (after the measurement is completed, a progress bar replaces the label to indicate the time before the start of the next measurement)
I Systolic and diastolic pressure value
Non-invasive blood pressure (NIBP)

Non-invasive blood pressure measurement modes

The following non-invasive blood pressure measurement modes are available:
- Single
- Interval
- Continuous
- Venous stasis

The selected mode affects the appearance of the non-invasive blood pressure parameter box (see page 272).

Before taking any non-invasive blood pressure measurements, read the precautions on page 271.

At the beginning of a measurement, the M540 inflates the cuff to a pressure that is 25 mmHg (3.3 kPa) in adult/pediatric mode and 30 mmHg (4 kPa) in neonatal mode above the previously detected systolic value. If the M540 cannot obtain a valid measurement, it reinflates the cuff to the maximum inflation pressure provided the measurement cycle has not timed-out. If the M540 cannot obtain a measurement within the measurement cycle, no further attempts are made until the next scheduled interval or until you initiate a single measurement manually. Error messages identify the cause of failed measurements (see page 475).

The last non-invasive blood pressure measurement value is displayed in the parameter box until the new measurement is completed. New values appear at the end of a measurement. A chime sounds at the end of a measurement when the corresponding function is activated (see page 278).

Single measurement mode

Single measurement mode allows you to start measurements when needed. You can start and stop a single measurement at the M540 and at the Cockpit.

To start/stop a single measurement

Do one of the following:
- Press the start/stop fixed key on the front of the M540. Press the key again to stop the measurement.
- Press the NIBP start/stop button on the main menu bar of the Cockpit. Press the button again to stop the measurement.

Interval measurements mode

WARNING
Because non-invasive blood pressure measurements occur intermittently, a patient’s condition may change between measurements. Therefore, do not rely on non-invasive blood pressure alarms alone to notify you of a patient’s changing condition.

In interval mode, the M540 initiates measurements at set intervals. Changing the interval setting during a measurement resets the interval timer. If you select another interval setting after interval mode was deactivated, you must select the NIBP start/stop button on the menu bar, for interval measurements to start.
Non-invasive blood pressure (NIBP)

You can still take single measurements during an interval cycle.
Interval measurements are not possible during:

- Venous stasis mode – the measurements resume immediately after the cuff deflates.
- Cardiac bypass mode – select the NIBP start/stop button to resume interval measurement after exiting cardiac bypass mode.
- Standby mode – select the NIBP start/stop button to resume interval measurement after exiting standby mode.
- Activated Continuous mode.

Aligning interval mode settings between Cockpit and M540

If interval mode is deactivated on the Cockpit and an M540 is docked with interval mode activated and a measurement is in progress, the non-invasive blood pressure measurement is canceled automatically. In addition, interval mode is deactivated on the M540.

If interval mode is activated on both devices but you dock an M540 with a different interval time, the non-invasive blood pressure measurement continues. However, the M540 interval time is adjusted to the Cockpit setting at the end of the measurement.

If you turn the M540 off and on again, and interval mode is activated on both the Cockpit and the M540, select NIBP start/stop button to resume interval mode.

To start/stop interval mode

1. Select the non-invasive blood pressure parameter box to select the NIBP page directly, or
 Select Sensor parameters... from the main menu bar.
2. Select the NIBP tab to access the NIBP page.
3. Select Interval time [min] and make your selection. The available settings are: Off (default), 1, 2, 2.5, 3, 5, 10, 15, 20, 30, 45, 60, 120, 240 min.
 For any interval setting of 5 minutes and up, the following time alignment occurs. After the first measurement is completed, all subsequent measurements align with the next natural time boundary that corresponds to the selected interval. For example, if a 5-minute interval is selected at 10:03, the next interval starts at 10:05, 10:10 and so on. If a 10-minute interval is selected at 10:07, the next interval starts at 10:10, 10:20, and so forth.
4. Press NIBP start/stop button on the main menu bar if you change the mode setting from Off to another setting (otherwise, interval measurements will not start).

To stop interval measurements

- Press the NIBP start/stop button on the main menu bar of the Cockpit.
- Press the start/stop fixed key on the front of the M540.

NOTE
Pressing the NIBP start/stop button longer than two seconds suspends interval mode and sets the Interval time [min] to Off.
If the M540 is power cycled while in interval mode, you must press the NIBP start/stop button to resume interval measurements.

NOTE
A safety timer ensures that a cuff remains deflated for at least 30 seconds before the end of a measurement and the beginning of a new one. This precaution avoids prolonged impeded blood flow which could be harmful. The safety timer overrides any interval setting and is of particular importance in the 1 and 2-minute intervals.

Pressing the NIBP start/stop button longer than two seconds suspends interval mode and sets the Interval time [min] to Off.

If the M540 is power cycled while in interval mode, you must press the NIBP start/stop button to resume interval measurements.
Continuous measurements

WARNING
When using continuous mode, observe the patient closely and verify limb perfusion clinically. Be extra vigilant when using continuous mode on neonates or hemodynamically compromised patients.

In continuous mode, the M540 continuously initiates NIBP measurements over a 5-minute period. A 10 second (±1 second) minimum interval between the end of one measurement and the start of another provides minimal perfusion of the limb.

To activate or deactivate continuous mode

1. Select the non-invasive blood pressure parameter box to select the NIBP page directly, or
2. Select **Sensor parameters...** from the main menu bar.
3. Select the NIBP tab to access the NIBP page.
4. Select **On** or **Off** next to **Continuous mode**.

NOTE
Continuous non-invasive blood pressure mode prevents you from enabling venous stasis.

To stop continuous measurements

- Press the **NIBP start/stop** button on the main menu bar, or
- Deactivate **Continuous mode** in the NIBP page (see page 278).
Non-invasive blood pressure (NIBP)

Venous stasis

By maintaining a constant cuff pressure, the M540 stops the blood flow to the lower extremity of the cuffed limb long enough to cannulate a patient. In this mode, the cuff occludes the limb for about as long as an non-invasive blood pressure measurement takes (approximately 2 minutes for adults and approximately 1 minute for neonates).

To activate or deactivate venous stasis

1. Select the non-invasive blood pressure parameter box to select the NIBP page directly, or
2. Select Sensor parameters... from the main menu bar.
3. Select the NIBP tab to access the NIBP page.
4. Make sure non-invasive blood pressure continuous mode is not activated (see page 278).
5. Select On next to Venous stasis.

WARNING
Do not use venous stasis on a limb that is unsuitable for non-invasive blood pressure measurements (for example, an arm with a catheter). If the patient experiences adverse reactions, immediately press the NIBP start/stop button to deflate the cuff.

Activating or deactivating venous stasis

NOTE
Make sure continuous non-invasive blood pressure mode is not enabled (see page 278) because it prevents you from using venous stasis mode.

NOTE
If configured to appear on the main menu bar, the Venous stasis button is also accessible on the main menu bar. For more information, see page 398.

NOTE
When the venous stasis mode begins, an attention tone sounds.

During active venous stasis, the non-invasive blood pressure parameter box reports the remaining time and displays the message Stasis in the parameter box. As soon as venous stasis is terminated, the parameter box resumes its previous appearance (see page 272).

Interval measurements are suspended during venous stasis but resume immediately after the cuff deflates.
Non-invasive blood pressure (NIBP)

Accessing the non-invasive blood pressure settings

1. Select the non-invasive blood pressure parameter box to select the NIBP page directly.
 or
 Select Sensor parameters... from the main menu bar.

2. Select the NIBP tab to access the NIBP page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter 符 button.

The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113

Non-invasive blood pressure parameter setup functions

All non-invasive blood pressure setup functions take place in the NIBP page (see page 278).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval time [min]</td>
<td>Off (default), 1 min, 2 min, 2.5 min, 3 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 45 min, 60 min, 120 min, 240 min</td>
<td>Defines intervals for non-invasive blood pressure measurements.</td>
</tr>
<tr>
<td>(Cardiac bypass mode automatically deactivates interval measurements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation mode</td>
<td>Adult (default), Pediatric, Neonate</td>
<td>Sets the threshold for maximum cuff inflation.</td>
</tr>
<tr>
<td>Continuous mode</td>
<td>On, Off (default)</td>
<td>Initiates successive non-invasive blood pressure measurements for 5 min.</td>
</tr>
<tr>
<td>Chime</td>
<td>On, Off (default)</td>
<td>Determines whether or not a tone sounds at the end of a completed non-invasive blood pressure measurement.</td>
</tr>
<tr>
<td>Venous stasis</td>
<td>On, Off (default)</td>
<td>Stops the blood flow to the lower part of the cuffed limb for a fixed time.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue, purple, orange, white (default)</td>
<td>Determines the color of the parameter values and labels.</td>
</tr>
</tbody>
</table>

278 Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Invasive blood pressure (IBP)

Overview of invasive blood pressure monitoring .. 280
Supported parameters .. 280
Invasive blood pressure pods .. 280

Invasive blood pressure precautions ... 282

Connecting the Hemo4 pod and Hemo2 pod .. 283
Connecting the MPod – QuadHemo .. 284
Connecting the Dual Hemo MCable ... 285
Preventing fluid ingress .. 285

Patient preparation for invasive blood pressure monitoring 286

Invasive blood pressure display .. 286
Invasive blood pressure parameter box .. 286
Large mean value .. 287
Invasive blood pressure waveforms ... 287

Labeling invasive blood pressure channels .. 288

Standard labels .. 289

Pressure label conflicts ... 290
Pod and M540 label conflicts ... 290

Zeroing an invasive blood pressure transducer .. 290
Zeroing a specific transducer .. 290
Zeroing all pressure transducers ... 291

Pulmonary wedge pressure ... 293

Starting wedge measurements from the pods ... 294
Starting wedge measurements from the Cockpit 295

Accessing the invasive blood pressure settings 297
Invasive blood pressure parameter setup functions 297

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Overview of invasive blood pressure monitoring

The M540 acquires, processes, and displays invasive blood pressure (IBP) signals and relays the data to the Cockpit. Several pods are available for monitoring invasive pressure. Monitoring more than two pressures simultaneously requires the Multi-IBP option.

Invasive blood pressure measurements are for adult, pediatric, and neonatal patients.

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 invasive blood pressure functions.

The invasive blood pressure monitoring functions are configurable in the parameter-specific setup page (see "Invasive blood pressure parameter setup functions" on page 297).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 480.

Supported parameters

See page 288 for available invasive blood pressure labels.

- Systolic pressures: GP1 S to GP4 S, ART S, PA S, LV S, RV S
- Diastolic pressures: GP2 D to GP4 D, ART D, PA D, LV D, RV D
- Mean pressures: GP1 M to GP4 M, ART M, PA M, LV M, RV M
- Additional pressures: ICP, CVP, LA, RA
- If both ART and ICP are connected, the algorithm computes the difference between ICP and mean ART and reports it as CPP.

Invasive blood pressure pods

Invasive blood pressure signals originate from the following hemodynamic pods:
- Hemo4
- Hemo2 pod
- Infinity MPod – QuadHemo (MPod – Quad-Hemo)
- Infinity MCable – Dual Hemo (Dual Hemo MCable)

Hemo4 pod

This pod measures up to four pressures, cardiac output, and temperature.

A Key for zeroing all pressures simultaneously (see page 290)
B Key for starting a cardiac output measurement
C Key for starting wedge pressure measurements
D Pressure label windows
E Transducer slots

NOTE

The connectors for temperature and cardiac output are located on the side panel of the hemodynamic pod.
Invasive blood pressure (IBP)

Hemo2 pod
This pod measures up to two pressures, cardiac output, and temperature.

- **A** Key for zeroing all pressures simultaneously (see page 290)
- **B** Key for starting a cardiac output measurement
- **C** Key for starting wedge pressure measurements
- **D** Pressure label windows
- **E** Transducer slots

MPod – QuadHemo
This pod measures up to four pressures, cardiac output, and temperature.

- **F** Key for zeroing all pressures simultaneously (see page 290)
- **G** Key for starting a cardiac output measurement
- **H** Key for starting wedge pressure measurements
- **I** Intermediate cables for attaching the transducers

NOTE
The connectors for temperature and cardiac output are located on the side panel of the hemodynamic pod.

NOTE
The connectors for temperature and cardiac output are located on the side panel of the hemodynamic pod.
Invasive blood pressure (IBP)

Dual Hemo MCable

The Dual Hemo MCable measures up to two pressures.

A. Dual Hemo MCable connector that connects to the M540

B. Transducer adapter cables for attaching the transducers

Invasive blood pressure precautions

WARNING

To prevent patient injury, never reuse a single-use transducer.

WARNING

Do not zero all pressures simultaneously using the \pm key if any pressure waveform is flat (nearly static).

There are additional warnings regarding pulmonary wedge pressure on page 293.
Connecting the Hemo4 pod and Hemo2 pod

The Hemo4 pod and Hemo2 pod connect directly to the M540. The following diagram shows where the gray hemo connector (A) is located on the side of the M540.

To connect the Hemo4 pod and Hemo2 pod

1. Attach the invasive blood pressure adapter (G) to the bottom of the Hemo4 pod/Hemo2 pod.
2. Connect one end of the connection cable (C) to the Hemo4 pod or the Hemo2 pod connector (B).
3. Connect the other end of the connection cable (C) to the gray hemo connector of the M540 (A).
4. Attach the transducers to the transducer slot (E).
5. Connect the transducer adapter cables (F) to the transducer cable (D).
Invasive blood pressure (IBP)

Connecting the MPod – QuadHemo

The MPod – QuadHemo connects directly to the M540.

1. Connect one end of connection cable (C) to the connector located along the right side of the MPod – QuadHemo (B).
2. Connect the other end of the connection cable (E) to the gray Hemo connector of the M540 (A).
3. Insert the transducers into the transducer slots (D).
4. Connect the transducer cables (F) to the transducer adapter cable (G).

The transducer adapter cables are permanently fastened to the back of the MPod – QuadHemo.

A Invasive blood pressure connector on the M540
B MPod – QuadHemo
C Red pod connection cable connector
D Transducer slot
E Grey pod connection cable connector
F Transducer cable
G Transducer adapter cable
Connecting the Dual Hemo MCable

The Dual Hemo MCable connects directly to the M540.

To connect the Dual Hemo MCable

1. Attach the transducers (D) to the transducer adapter cables (C). The transducer adapter cables are permanently fastened to the Dual Hemo MCable.

2. Connect the Dual Hemo MCable connector (B) to the gray Hemo connector (A) on the M540.

Preventing fluid ingress

The following illustration shows how to correctly position the Dual Hemo MCable to prevent fluids from entering the ports where the transducer cables are attached. If the Dual Hemo MCable is positioned wrong, fluids may enter and damage the MCable.

A Invasive blood pressure connector on the M540
B Dual Hemo MCable connector
C Transducer adapter cable
D Transducer
E Transducer cables
Patient preparation for invasive blood pressure monitoring

NOTE
If air bubbles appear in the tubing system, flush the system with the infusion solution again. Air bubbles may lead to wrong pressure measurement values.

The following tips provide optimal invasive blood pressure monitoring results but must never replace hospital-approved practices or manufacturer's recommendations.

- When preparing the patient, make sure there are no air bubbles in the sensor or the stopcock.
- For maximum signal strength, choose the shortest possible length of high-pressure tubing. Shorter tubing reduces signal attenuation but is more susceptible to motion artifacts. High-pressure tubing limits signal dampening.
- Position the transducer so that it is level with the appropriate anatomical reference point for each monitored pressure.

Invasive blood pressure display

On the Cockpit, the invasive blood pressure display consists of:
- Invasive blood pressure parameter box
- Invasive blood pressure waveform

Invasive blood pressure parameter box

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The content of the invasive blood pressure parameter boxes depends on whether the parameter is pulsatile or non-pulsatile. Parameter boxes for pulsatile pressures (ART, LV, PA, RV, GP1, GP2, GP3, GP4) display systolic, diastolic, and mean pressure values. Parameter boxes for non-pulsatile pressures (LA, RA, CVP, ICP) display only the mean pressure value.

If the M540 detects a static pressure, the algorithm computes only the mean pressure. A static pressure condition occurs when the maximum and minimum values of a pulsatile pressure signal differ by less than 3 mmHg (0.4 kPa).
Invasive blood pressure (IBP)

The invasive blood pressure parameter box contains the following elements:

- **A**: IBP parameter label
- **B**: Unit of measure (can be activated/deactivated)
- **C**: Mean pressure value
- **D**: Alarm limits or crossed triangle symbols when alarms are deactivated
- **E**: Systolic/diastolic pressure values

Large mean value

The invasive blood pressure mean value can either be displayed in regular or large font size.

To activate the large mean value display

- Select the invasive blood pressure parameter box to select the IBP page directly.
- or
- 1. Select **Sensor parameters...** from the main menu bar.
- 2. Select the desired IBP tab (for example, GP1) along the right side of the IBP page.
- 3. Select **On** next to **Large mean**.

Invasive blood pressure waveforms

Invasive blood pressure waveforms are either displayed in separate waveform channels or in overlapped format in one channel. When overlapped, the waveform area increases to combine multiple waveforms. For each invasive blood pressure waveform, a corresponding parameter box is displayed. To activate the overlap display for adjacent pressure waveforms, see page 393 in the "System configuration" chapter.
Invasive blood pressure (IBP)

Labeling invasive blood pressure channels

The invasive blood pressure label determines how a signal is analyzed and reported. The M540 takes the pressure labels from the connected pod or MCable provided the transducers are connected. When a new label is assigned to a pressure channel, the M540 clears the parameters and conditions set for the previous label (including alarms and waveform scales). It replaces these values with the settings of the new label. When the M540 is docked on the M500, all pressure labels are transferred to the Cockpit.

The following rules apply to labeling pressure channels:

- If no pressure labels are assigned, the labels GP1 to GP4 are automatically assigned depending on how many pressures are connected.
- The zero value, the date, and time associated with the pressure channel remain unchanged even if a new label is assigned.

NOTE
Certain pressure labels have extra selections in their corresponding Cockpit parameter setup pages. For example, from the PA page you can start a wedge pressure and from the ICP page you can set a minimum scale.

To assign a pressure label manually

- Select the invasive blood pressure parameter box to select the IBP page directly.
- or
- 1 Select Sensor parameters... from the main menu bar.
- 2 Select the IBP tab to access the IBP page.
- 3 Select the desired IBP tab (labeled GP1, GP2, GP3, or GP4) along the right side of the IBP page.
- 4 Select the button next to Label and choose the label from the list (see the table on page 289).
Standard labels

The M540 detects the labels automatically from the hemodynamic pod, provided a transducer is connected. The M540 transfers the labels to the Cockpit. You can also label pressure channels manually. The following table lists the available invasive blood pressure labels.

<table>
<thead>
<tr>
<th>Label</th>
<th>Pressure type</th>
<th>Measured pressures</th>
<th>Measurement range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>Arterial pressure</td>
<td>Systolic, diastolic, mean</td>
<td>−50 to +400 mmHg</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricular pressure</td>
<td></td>
<td>−6.6 to +53.3 kPa</td>
</tr>
<tr>
<td>PA</td>
<td>Pulmonary arterial pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricular pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVP</td>
<td>Central venous pressure</td>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>CPP 1)</td>
<td>Cerebral perfusion pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Right atrial pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Left atrial pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial pressure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generic Labels

<table>
<thead>
<tr>
<th>Label</th>
<th>Measured pressures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GP1 to GP4</td>
<td>Systolic, diastolic, mean</td>
<td></td>
</tr>
</tbody>
</table>

1) The CPP value is only calculated when ICP and ART M pressure values are available.
Pressure label conflicts

Each pressure label is assigned to one location. If you try to reuse a label, you must confirm it. The M540 assigns the label to the currently selected parameter box and places an automatic pressure label (GP1 to GP4) in the previous location.

Pod and M540 label conflicts

The hemodynamic pods store pressure labels like the M540. When a pod with previously stored labels is connected, different pressure labels may exist for the same channel, thus causing a conflict.

If a transducer is connected to the pod, the label stored in the pod prevails. The M540 assigns that parameter label to the pressure label in the IBP page. If no transducer is connected to the pod, the label stored in the M540 has priority.

Zeroing an invasive blood pressure transducer

To establish accurate invasive blood pressure values, zero the transducer according to the hospital’s protocol at least once a day. Perform additional zeroing under the following circumstances:

- After introducing a catheter into the vascular system of the patient
- Before each monitoring session
- Each time you use a new transducer or tubing
- Whenever you connect the transducer cable to the monitor
- If the reported pressure values seem incorrect
- When the message %0 please check zero appears.

For zeroing to be successful, a pressure must be stable for at least 3 seconds. Messages report the status of the zeroing process. The time and date of the last successful zero is recorded on the IBP page. Check the invasive blood pressure waveform and repeat the zeroing procedure if the zeroing fails because the pressures are not static. If the procedure fails after two attempts, replace the transducer or consult your technical personnel.

If the attention tone is activated (see page 391), a tone sounds when the zeroing procedure is successfully completed.

Zeroing a specific transducer

This procedure allows you to select a specific transducer for zeroing. You can also initiate the procedure from the M540 (see the instructions for use Infinity Acute Care System – Infinity M540 for details).
To zero a specific transducer

- Select the invasive blood pressure parameter box to select the IBP page directly.

or

1. Select Sensor parameters... from the main menu bar.
2. Select the IBP tab to access the IBP page.
3. Select the desired IBP tab (for example, ART) along the right side of the IBP page.
4. Align the transducer to the level of the heart (phlebostatic access point, fifth intercostal space and midaxillary line).
5. Close the transducer stopcock to the patient and open it to air.
6. Select the button next to Zero in the IBP page.

If the zeroing of the transducer is successful, the message %0 zero accepted appears. If zeroing failed, the message %0 did not zero appears. In that case, repeat steps three to five.

Zeroing all pressure transducers

This procedure zeroes all pressure transducers simultaneously.

Zeroing all pressures simultaneously from the Hemo4 pod, the Hemo2 pod, and the MPod – QuadHemo automatically zeroes all transducers open to air simultaneously.

WARNING

Using the Zero all button on the Cockpit or the %O% key on the hemodynamic pods zeroes all static invasive blood pressures < 3 mmHg.

WARNING

Certain invasive blood pressure alarms are suppressed while pressures are being zeroed. For detailed information, see page 106.
To zero all pressure transducers from the hemodynamic pods

1 Align the transducer to the level of the heart (phlebostatic access point, fifth intercostal space and midaxillary line).

2 Close the stopcocks to the patient, and open them to air.

3 Press the \(A \) key (A) on the Hemo4 pod, Hemo2 pod, or the MPod – QuadHemo.

4 Verify that the transducers have been zeroed. If zeroing failed, repeat steps 2 and 3.

To zero all pressure transducers from the Cockpit

1 Align the transducers to the heart level of the patient.

2 Close the stopcocks to the patient, and open them to air.

3 Select the \(\text{Sensor parameters... > Zero all} \) buttons on the main menu bar (C700).

or

Select the \(\checkmark \) symbol next to the \(\text{Sensor parameters...} \) button on the main menu bar (C500).

or

Select the IBP parameter box to access the IBP page.

4 Select the \(\text{Zero} \) button.

5 Verify that the transducers have been zeroed. If zeroing failed, repeat the procedure.

WARNING

Certain invasive blood pressure alarms are suppressed while pressures are being zeroed. For detailed information, see page 106.

NOTE

If configured to appear on the main menu bar, the \(\text{Zero all} \) button is also accessible on the main menu bar. For more information, see page 398.
Invasive blood pressure (IBP)

Pulmonary wedge pressure

When the M540 is docked, you can calculate a pulmonary wedge pressure (PWP) from the Hemo4 pod, Hemo2 pod, and the MPod – QuadHemo. You can also calculate a wedge pressure from the Wedge page on the Cockpit (see page 296). You cannot request wedge pressures from the M540. During PWP measurements, only the mean PA pressure is displayed.

WARNING
For the safety of the patient keep the balloon-inflation time to the minimum necessary to acquire an accurate PWP value. Prolonged inflation of the balloon can result in pulmonary hemorrhage or infarction.

WARNING
Do not over-inflate the balloon because an over-inflated balloon can rupture the pulmonary artery.

WARNING
The PA catheter may move into the wedge position before the balloon is inflated. One sign of this “catheter drift” is that the PWP waveform becomes wedge shaped. Follow your hospital’s clinical guidelines to correct the catheter’s position.

WARNING
Alarm monitoring for invasive pressures, if activated, is temporarily deactivated during PWP measurements to prevent nuisance alarms. The parameter box does not display a crossed triangle symbol because alarm monitoring is automatically activated upon completion of a wedge pressure measurement.
Starting wedge measurements from the pods

To start a wedge pressure measurement

1. Press the Wedge key (A) on the Hemo2 pod, Hemo4 pod, or the MPod – QuadHemo. The message **Inflate balloon. Press "Wedge" to Start.** appears on the Cockpit.

2. Press the Wedge key (A) again to start.
 - PA alarms are deactivated temporarily.
 - The message **Wedge in progress** appears on the Cockpit and the measurement begins. A PWP value is displayed at the bottom of the Wedge page on the Cockpit within 10 seconds. The message **Deflate balloon and press "Save wedge" to finish** appears.

3. Press the Wedge key (A) again to save the value. The following happens on the Wedge page of the Cockpit (see page 295):
 - The message **IBP** appears in the message field.
 - A new PWP value calculated during the next 10 seconds appears. An attention tone sounds at the end of the calculation when the corresponding feature is activated (see page 391). Also, the message **Deflate balloon and press "Save wedge" to finish** appears in the message field.
 - The PA and reference waveforms are stopped, and the message **Waveforms stopped** appears above the PA scale in the display window.
 - After a successful wedge measurement, the PA waveform resumes its previous size and sweep speed. PA systolic and diastolic values are displayed again, and PA alarms are restored to the values before entering Wedge mode.
Invasive blood pressure (IBP)

Starting wedge measurements from the Cockpit

The following diagram shows the *Wedge* page where you start wedge measurements manually. The wedge pressure value is saved automatically when:

- You close the *Wedge* page.
- 240 seconds have elapsed after the wedge pressure was started and a valid PWP value exists.

```
Precedures

F       G
A       B       C       D       E

H

I

J

K

Reference waveform button
```

A *Prepare wedge* button
B *Start wedge* button
C *Freeze/ Adjust* button
D *Save wedge* button
E *Cancel wedge* button
F Message field
G PWP value
H PWP results window
I *Scale* button
J *Sweep speed [mm/s]* button
Invasive blood pressure (IBP)

To start a wedge measurement

- Select the PA parameter box (if displayed) > select the Start wedge button.

NOTE
If configured to appear on the main menu bar, the Start wedge button is also accessible on the main menu bar. For more information, see page 398.

or

1. Select the Procedures... button from the main menu bar.
2. Select the Wedge tab (if not already selected).
3. Verify that the PA catheter has been properly inserted.
4. Select the Prepare wedge button (A). The following happens:
 - PA alarms are deactivated temporarily
 - The message Inflate balloon. Press "Wedge" to Start. appears in the message field (F). Only the PA mean value appears in the parameter box (the diastolic/systolic values are blanked).
 - The button Start wedge appears.
5. Use the Scale button (I) to change the scale, if necessary.
6. Use the Sweep speed [mm/s] (J) button to select a different sweep speed for the waveform, if necessary.
7. Use the Reference waveform button (K) to select a reference waveform (available settings: None, RRI).
8. Select the Start wedge button (B).
 - The message Wedge in progress appears in the message field (F).
 - A new PWP value calculated during the next 10 seconds appears. An attention tone sounds at the end of the calculation when the feature is activated (see page 391). Also, the message Deflate balloon and press "Save wedge" to finish appears in the message field (F).
 - The PA and reference waveforms are stopped, and the message Waveforms stopped appears above the PA scale in the display window (H).
 - A horizontal cursor is drawn through the PA waveform.
9. Select one of the following buttons:
 - Freeze/Adjust button (C) to alter the PWP value manually.
 - Save wedge button (D) to save the new value (it is stored in the trend function)
 - Cancel wedge (E) to cancel the measurement.

After a successful wedge measurement, the PA and respiratory waveforms resume their previous size and sweep speed. PA systolic and diastolic values are displayed again, and PA alarms are restored to the values before entering wedge mode.
Invasive blood pressure (IBP)

Accessing the invasive blood pressure settings

- Select the IBP parameter box to select the IBP page directly.

or

Select Sensor parameters... from the main menu bar > IBP tab to access the IBP page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

Invasive blood pressure parameter setup functions

All invasive blood pressure setup functions take place in the IBP page (see page 297).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>None</td>
<td>Zeroes only the pressure indicated on the IBP page and displays the time and date of the last zeroing (see page 291).</td>
</tr>
<tr>
<td>Label</td>
<td>ART, PA, CVP, LA, LV, RV, RA, ICP, GP1 to GP4.</td>
<td>Allows you to assign a label to each pressure channel.</td>
</tr>
<tr>
<td>Scale</td>
<td>5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300 mmHg 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 32, 36, 40 kPa GP1 to 4, ART, LV: 200 mmHg (30 kPa) for adults 150 mmHg (20 kPa) for pediatrics 100 mmHg (16 kPa) for neonates PA, RV: 50 mmHg (12 kPa) ICP, CVP, LA, RA: 20 mmHg (4 kPa)</td>
<td>Controls the upper scale of the pressure waveform. The lower scale value is either −5 mmHg (−0.7 kPa) for pressures labeled CVP, RA, LA or 0 mmHg (0 kPa) for other pressure labels.</td>
</tr>
</tbody>
</table>
Invasive blood pressure (IBP)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>8 Hz and 16 Hz (default)</td>
<td>Selects the filter setting applied to the invasive blood pressure signal.</td>
</tr>
<tr>
<td>Large mean</td>
<td>On, Off (default)</td>
<td>Determines whether the mean invasive blood pressure value appears in large or normal font.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue, purple, orange, white.</td>
<td>Determines the color of the waveforms, parameter labels, and values.</td>
</tr>
<tr>
<td>ICP parameter page only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. scale</td>
<td>On, Off (default)</td>
<td>Allows you to select the minimum scale. When this function is activated, the following happens:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The lower value is set at -25 mmHg (-3 kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The higher value is set at 25 mmHg (3 kPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The Scale selection appears ghosted</td>
</tr>
<tr>
<td>PA page only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start wedge</td>
<td>None</td>
<td>Allows you to start a wedge pressure measurement (see page 294).</td>
</tr>
</tbody>
</table>
Cardiac output (C.O.)

Overview of cardiac output monitoring ... 300
Cardiac output measurement method ... 300
Supported parameters ... 300

C.O. precautions ... 300

Connecting the cardiac output hardware ... 301

Patient preparation for cardiac output monitoring ... 303

Cardiac output display ... 304

Cardiac output computation constant ... 305

Cardiac output measuring modes ... 307
Automatic measurements ... 307
Manual measurements ... 309

Saving the cardiac output value ... 310

Reviewing the cardiac output averages ... 311

Accessing the cardiac output settings ... 312

Cardiac output parameter setup functions ... 312
Overview of cardiac output monitoring

The M540 uses the thermodilution method to compute cardiac output (C.O.) for adult and pediatric patients. Cardiac output monitoring is not intended for neonatal patients.

The MPod – QuadHemo, Hemo4, and Hemo2 pods connect to the M540 and acquire the blood and injectate temperatures which are used to compute the cardiac output value.

Although the M540 processes the cardiac output algorithms, you can only view the data and execute cardiac output functions on the Cockpit.

Cardiac output measurement method

A solution of known temperature and volume is injected into the blood stream in the right atrium. A thermistor in the catheter tip continuously measures the temperature of the blood as it leaves the heart. The injectate mixes with and cools the surrounding blood. The blood reaches its minimum temperature relatively quickly and then warms up slowly until it returns to the baseline blood temperature. The total drop in blood temperature is inversely related to the cardiac output of the patient. The lower the cardiac output value, the more the injectate cools the blood.

When computing cardiac output, the M540 takes the following factors into account:
- Injectate volume, temperature, density, and specific heat of the fluid that is being injected
- Baseline blood temperature, density, and specific heat of the blood
- Temperature changes of the blood injectate mixture
- Area under the temperature curve

The M540 supports the automatic and manual measuring modes.

The cardiac output monitoring functions are configurable in the parameter-specific setup page and the Procedures > C.O. page (see page 311).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 480.

Supported parameters

- C.O. – Cardiac output
- Tblood – blood temperature
- Tinj – injectate temperature

C.O. precautions

WARNING
An incorrect computation constant may yield incorrect cardiac output measurements and put the patient at risk. Confirm that the manually entered computation constant is correct for the catheter you are using.

WARNING
Verify that you enter the patient’s current weight (not his or her ‘admit’ weight). Failure to enter an accurate weight value can result in inaccurate calculations and put the patient at risk.
Connecting the cardiac output hardware

You can connect the hemodynamic cable to one of the following devices:

- MPod – QuadHemo
- Hemo4 pod
- Hemo2 pod

The intermediate cable from the listed devices connect directly to the M540.

A M540 hemodynamic connector
B Grey intermediate cable connector
C Red intermediate cable connector
D MPod – QuadHemo hemodynamic connector
E Pod connector of the cardiac output intermediate cable
F Cardiac output connector of the MPod – QuadHemo
G Thermistor connector of the cardiac output intermediate cable
H Catheter cable and thermistor cable

To connect the cardiac output hardware using the MPod – QuadHemo

1. Connect the grey connector of the hemodynamic intermediate cable (B) to the grey hemodynamic connector (A) of the M540.
2. Connect the red connector of the hemodynamic intermediate cable (C) to the MPod – QuadHemo connector (D).
3. Connect the pod connector of the cardiac output intermediate cable (E) to the cardiac output connector of the MPod – QuadHemo (F).
4. Connect the catheter and the thermistor cables (H) to the thermistor connector of the cardiac output intermediate cable (G).
To connect the cardiac output hardware using the Hemo4 and the Hemo2 pod

1. Connect the hemodynamic intermediate cable connector (B) to the grey hemodynamic connector (A) of the M540.

2. Connect red connector of the hemodynamic intermediate cable (C) to the Hemo4/Hemo2 pod connector (D).

3. Connect the pod connector of the cardiac output intermediate cable (F) to the cardiac output connector of the Hemo4/Hemo2 pod (E).

4. Connect the catheter and the thermistor cables (H) to the thermistor connector of the cardiac output intermediate cable connector (G).

A M540 hemodynamic connector
B Grey intermediate cable connector
C Red intermediate cable connector
D Hemodynamic pod connector
E Cardiac output connector
F Pod connector of the cardiac output intermediate cable
G Thermistor connector of the cardiac output intermediate cable
H Thermistor cables

Cardiac output (C.O.)
Patient preparation for cardiac output monitoring

The following tips provide optimal cardiac output monitoring results but must never replace hospital-approved practices or manufacturer’s recommendations.

- Follow the recommendations of the manufacturer. Dräger recommends that you place pre-filled syringes or the closed injectate delivery system into an ice bath.
- Check the ice bath regularly and add ice to maintain a temperature between 0 °C (32 °F) and 5 °C (41 °F). The accuracy of measurements done with the thermodilution method increases as the temperature of the injectate approaches 0 °C (32 °F).
- Verify the injectate volume.
- Verify the proper selection of catheter type and size or computation constant if Other is chosen for catheter type.
- Use an in-line injectate system. Systems that measure the injectate temperature in the ice bath can introduce errors. These errors happen because the injectate temperature changes between its removal from the ice bath and the injection.
- If you fill your syringes manually, fill them with the same volume each time. The recommended amount is 10 cc for adults and 5 cc for pediatric patients. Do not touch the body of the syringe to avoid warming the injectate.
- Inject the entire volume in one swift, continuous motion.
- Perform the injection at the end of expiration. Taking successive cardiac output measurements at different points in the respiratory cycle provides different measurements, especially for patients on mechanical ventilators.
- Discard results that are widely different from the general trend, and results associated with irregularly shaped waveforms.

NOTE

For the most accurate results when using an injectate at room temperature, use a 10 cc injectate volume unless clinically contraindicated.
Cardiac output display

On the Cockpit, the cardiac output display consists of a parameter box.

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53. Temperature values in parameter boxes may display with a decimal point instead of a comma.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The cardiac output parameter box contains the following elements:

<table>
<thead>
<tr>
<th>A</th>
<th>C.O. label</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Time stamp of the last saved cardiac output average (this area is blank if no measurements have been taken over the past 24 hours)</td>
</tr>
<tr>
<td>C</td>
<td>Blood temperature label</td>
</tr>
<tr>
<td>D</td>
<td>Blood temperature (Tblood) value – acquired from the hemodynamic pod</td>
</tr>
<tr>
<td>E</td>
<td>Upper/lower alarm limits or crossed triangle symbol when alarms are deactivated</td>
</tr>
<tr>
<td>F</td>
<td>Injectable temperature label</td>
</tr>
<tr>
<td>G</td>
<td>Injectable temperature value</td>
</tr>
<tr>
<td>H</td>
<td>Previously saved cardiac output value – average of a series of saved measurements</td>
</tr>
</tbody>
</table>

![Cardiac output parameter box diagram](image)
Cardiac output computation constant

WARNING
An incorrect computation constant may yield incorrect cardiac output measurements and put the patient at risk. Confirm that the manually entered computation constant is correct for the catheter you are using.

The computation constant compensates for the specific characteristics of the cardiac output catheters. If you use a Baxter, BD/Ohmeda, or Arrow catheter, the computation constant is automatically selected. If you choose Other as a catheter type (see page 312), enter a computation constant manually. The entered computation constant must correspond to the catheter, its size, injectate volume, and injectate temperature.

Consult the documentation included with the catheter for computation constants, and select one that corresponds to the used injectate volume and temperature.

To enter a computation constant manually

Make sure the catheter type Other is selected (see page 312), otherwise the button Comp. constant is not available on the Procedures... > C.O. page.

1. Access the C.O. page (see page 312)
 or
 Access the Procedures... > C.O. page (see page 311).
2. Select the keypad symbol next to Comp. constant to open a numeric keypad.
3. Enter the correct computation constant for the type of catheter being used (refer to the tables on page 306).
4. Select Enter on the keypad to confirm the value.
Cardiac output (C.O.)

The following tables list the computation constants for Baxter, BD/Ohmeda, and Arrow catheters.

Baxter computation constants

<table>
<thead>
<tr>
<th>Catheter size</th>
<th>Injectate volume</th>
<th>Injectate temperature (Tinj)</th>
<th>sensor connected</th>
<th>sensor disconnected</th>
</tr>
</thead>
<tbody>
<tr>
<td>7F</td>
<td>10 cc</td>
<td>Tinj = –5 to +16 °C (23 to 61 °F)</td>
<td>0.561</td>
<td>0.608</td>
</tr>
<tr>
<td>7F</td>
<td>5 cc</td>
<td>Tinj = 16 to 25 °C (61 to 80 °F)</td>
<td>0.301</td>
<td>0.247</td>
</tr>
<tr>
<td>7.5F</td>
<td>10 cc</td>
<td>Tinj = 20 °C (68 °F)</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>7.5F</td>
<td>5 cc</td>
<td></td>
<td>0.259</td>
<td>0.247</td>
</tr>
<tr>
<td>7.5F</td>
<td>3 cc</td>
<td></td>
<td>0.281</td>
<td>0.254</td>
</tr>
<tr>
<td>5F</td>
<td>5 cc</td>
<td></td>
<td>0.287</td>
<td>0.257</td>
</tr>
<tr>
<td>5F</td>
<td>3 cc</td>
<td></td>
<td>0.285</td>
<td>0.270</td>
</tr>
</tbody>
</table>

BD/Ohmeda computation constants

<table>
<thead>
<tr>
<th>Catheter size</th>
<th>Injectate volume</th>
<th>Injectate temperature (Tinj)</th>
<th>sensor connected</th>
<th>sensor disconnected</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5F</td>
<td>10 cc</td>
<td>Tinj = –5 to +16 °C (23 to 61 °F)</td>
<td>0.579</td>
<td>0.628</td>
</tr>
<tr>
<td>7.5F</td>
<td>5 cc</td>
<td>Tinj = 16 to 25 °C (61 to 80 °F)</td>
<td>0.281</td>
<td>0.309</td>
</tr>
<tr>
<td>7F</td>
<td>3 cc</td>
<td>Tinj = 20 °C (68 °F)</td>
<td>0.160</td>
<td>0.181</td>
</tr>
<tr>
<td>7F</td>
<td>10 cc</td>
<td></td>
<td>0.579</td>
<td>0.628</td>
</tr>
<tr>
<td>7F</td>
<td>5 cc</td>
<td></td>
<td>0.281</td>
<td>0.309</td>
</tr>
<tr>
<td>5F</td>
<td>3 cc</td>
<td></td>
<td>0.160</td>
<td>0.181</td>
</tr>
<tr>
<td>5F</td>
<td>5 cc</td>
<td></td>
<td>0.291</td>
<td>0.316</td>
</tr>
<tr>
<td>5F</td>
<td>3 cc</td>
<td></td>
<td>0.170</td>
<td>0.188</td>
</tr>
</tbody>
</table>
Cardiac output (C.O.)

Cardiac output measuring modes

Two cardiac output measuring modes are available: automatic and manual. If unstable blood temperatures, artifact, or other conditions are preventing automatic measurements, switch to manual mode.

If the attention tone is not deactivated (see page 391), a tone sounds when the cardiac output value has been computed.

Automatic measurements

In auto mode, the message *Inject when ready* appears in the **Procedures... > C.O.** page of the Cockpit when the baseline blood temperature is stable. If the blood temperature becomes unstable, the message *Inject when ready* is replaced by the message *Poor baseline*. To select the automatic cardiac output mode, see page 312.

Arrow computation constants

<table>
<thead>
<tr>
<th>Catheter size</th>
<th>Injectate volume</th>
<th>Tinj = -5 °C to 23.9 °C (23 °F to 75 °F)</th>
<th>Tinj >=24 °C (75.2 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5F</td>
<td>10 cc</td>
<td>0.532</td>
<td>0.586</td>
</tr>
<tr>
<td>7.5F</td>
<td>5 cc</td>
<td>0.249</td>
<td>0.265</td>
</tr>
<tr>
<td>7.5F</td>
<td>3 cc</td>
<td>0.131</td>
<td>0.155</td>
</tr>
<tr>
<td>7F</td>
<td>10 cc</td>
<td>0.541</td>
<td>0.601</td>
</tr>
<tr>
<td>7F</td>
<td>5 cc</td>
<td>0.250</td>
<td>0.273</td>
</tr>
<tr>
<td>7F</td>
<td>3 cc</td>
<td>0.134</td>
<td>0.156</td>
</tr>
<tr>
<td>5F</td>
<td>5 cc</td>
<td>0.267</td>
<td>0.303</td>
</tr>
<tr>
<td>5F</td>
<td>3 cc</td>
<td>0.157</td>
<td>0.192</td>
</tr>
</tbody>
</table>
Cardiac output (C.O.)

To start a measurement in auto mode

1 Press the cardiac output start key (A) on the MPod – QuadHemo or the Hemo4/Hemo2.
 or
 Select the Start C.O. button on the Procedures... > C.O. page (see page 311).

 NOTE
 If configured to appear on the main menu bar, the Start C.O. button is also accessible on the main menu bar. For more information, see page 398.

2 Wait for a tone to sound and the message *Inject when ready* message to appear which indicates that a stable blood temperature has been detected. Do not perform an injection before the *Inject when ready* message appears.

3 Inject the saline solution into the bloodstream. A thermodilution curve appears, displaying the change in blood temperature. If the blood temperature becomes unstable, the measurement is canceled automatically. If no temperature drop is detected, the curve stops and the message *%0 No Temperature Change* appears.

4 Repeat step 2 to take additional measurements or to repeat a measurement, making sure to wait for the *Inject when ready* message.

The Procedures... > C.O. page (see page 311) stores up to five cardiac output measurements. Each value panel is touch-sensitive and allows you to include or exclude a value from the calculation of the average. Any value that is crossed out is excluded from the average. If you touch the panel again, the value reappears and will be included in the average.

To save the cardiac output average, see page 310.
Manual measurements

If automatic measurements are not possible due to unstable blood temperatures or other causes, switch to manual mode. To select manual cardiac output mode, see page 313.

To start a measurement in manual mode

- Press the cardiac output start key (A) on the MPod – QuadHemo or the Hemo4/Hemo2 pods.

or

1 Select Procedures... from the main menu bar.
2 Select the C.O. tab to access the Procedures... > C.O. page.
3 Select the Start C.O. button on the Cockpit. Inject the saline solution immediately.
4 Repeat steps 1 and 2 for additional measurements.

The Procedures... > C.O. page (see page 311) stores up to five cardiac output averages with time stamps. Each value panel is touch-sensitive and allows you to include or exclude a value from the calculation of the average. Any value that is crossed out is excluded from the average. If you touch the panel again, the value re-appears and will be included in the average.

To save the cardiac output average, see page 310.
Cardiac output (C.O.)

Saving the cardiac output value

After completing a measurement, you can store the cardiac output average. Closing the Procedures... > C.O. page without saving the cardiac output value(s) causes any unsaved values to be lost.

To save the cardiac output value manually

1. Select Procedures... from the main menu bar.
2. Select the C.O. tab to access the Procedures... > C.O. page.
3. Select the Save C.O. average button.

The stored cardiac output value and the time stamp are stored in the trend function and the parameter box.
Reviewing the cardiac output averages

Different injection techniques cause variations in cardiac output measurements. To compensate for such discrepancies, you can review up to five measurements and use them to compute a cardiac output average. The following diagram shows the Procedures > C.O. page after computing an average.

A Start C.O. button (only available in manual mode – see page 309)
B Save C.O. average button
C Most recent cardiac output average
D Blood and injectate temperature value field
E Curve field
F Up to five cardiac output measurements with time stamps. Each value panel is touch-sensitive and allows you to include or exclude a value from the calculation of the average. Any value that is crossed out is excluded from the average. If you touch the panel again, the value re-appears and will be included in the average.
G Catheter type button
H Catheter size button
I Injectate volume [cc] button

If you select the catheter type Other (see page 312), a button appears at the bottom of the page. This button accesses a keypad for entering a computation constant.
Cardiac output (C.O.)

Accessing the cardiac output settings

- Select the cardiac output parameter box to select the C.O. page directly.
 or

1 Select Sensor parameters... from the main menu bar.

2 Select the C.O. tab to access the C.O. page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

The top portion of the page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

Cardiac output parameter setup functions

All cardiac output setup functions take place in the C.O. page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter type</td>
<td>– BD/Ohmeda (default)</td>
<td>Displays the currently selected catheter type.</td>
</tr>
<tr>
<td></td>
<td>– Edwards/Baxter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Arrow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Other</td>
<td></td>
</tr>
<tr>
<td>Catheter size</td>
<td>5F, 7F (default), 7.5F</td>
<td>Displays the currently selected catheter size.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If Other is selected for Catheter type setting, this button is not available.</td>
</tr>
<tr>
<td>Injectate volume [cc]</td>
<td>3.0, 5.0, or 10.0 (default)</td>
<td>Displays the currently selected volume of the injectate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If Other is selected for Catheter type setting, this button is not available.</td>
</tr>
</tbody>
</table>
Cardiac output (C.O.)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. constant</td>
<td></td>
<td>The computation constant must be entered manually if the catheter type Other was selected (see page 312). The computation constant depends on the injectate volume and temperature according to the specific values provided by the catheter.</td>
</tr>
<tr>
<td>This selection only appears if the Catheter type Other was selected.</td>
<td>– 0.100 to 0.999</td>
<td>– 0.542 (default)</td>
</tr>
<tr>
<td>C.O. mode</td>
<td>Auto (default), Manual</td>
<td>Determines the cardiac output measurement mode (see page 307).</td>
</tr>
<tr>
<td>Start C.O.</td>
<td>None</td>
<td>Starts a cardiac output measurement (see page 307).</td>
</tr>
<tr>
<td>Color</td>
<td>White (default); there is no color selection for cardiac output</td>
<td>Determines the color of the curves, parameter labels, and values.</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
Carbon dioxide concentrations (CO₂)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of CO₂ monitoring</td>
<td>316</td>
</tr>
<tr>
<td>Supported parameters</td>
<td>316</td>
</tr>
<tr>
<td>CO₂ precautions</td>
<td>317</td>
</tr>
<tr>
<td>Connecting the sensor</td>
<td>318</td>
</tr>
<tr>
<td>Patient preparation for CO₂ monitoring</td>
<td>319</td>
</tr>
<tr>
<td>CO₂ display</td>
<td>320</td>
</tr>
<tr>
<td>CO₂ parameter box</td>
<td>320</td>
</tr>
<tr>
<td>Capnograms</td>
<td>321</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>321</td>
</tr>
<tr>
<td>Accessing the CO₂ settings</td>
<td>323</td>
</tr>
<tr>
<td>CO₂ parameter setup functions</td>
<td>323</td>
</tr>
</tbody>
</table>
Overview of CO₂ monitoring

The M540 provides fast and continuous mainstream measurements of carbon dioxide concentrations (CO₂) in the airway of intubated patients. The M540 acquires signals from a CO₂ sensor (Infinity MCable – Mainstream CO₂) which fits over a mainstream airway adapter. The lightweight, reusable CO₂ mainstream sensor provides sensitive and accurate measurements. It uses non-dispersive infrared technology to measure CO₂ in respiratory gases.

CO₂ monitoring is available for adult, pediatric, and neonatal patients. Refer to the instructions for use entitled Infinity Acute Care System – Infinity M540 for ordering information of the appropriate size of accessories.

As respiration gases flow through the airway adapter, the sensor analyzes the expired and inspired air of the patient. The analysis is accomplished by sending a beam of infrared light through transparent ports in the airway adapter while detecting changes in CO₂ absorption levels.

Supported parameters

- etCO₂ – end-tidal CO₂
- inCO₂ – inspired CO₂
- RRC – respiration rate calculated from the capnogram

Refer to the instructions for use Infinity Acute Care System – Infinity M540 for a detailed description of the M540 CO₂ functions.

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. Parameter-specific error messages are listed on page 487.
CO₂ Precautions

Refer to “Site of operation” on page 17 for general precautions.

Warning

RRc Apnea Alarms

- RRc apnea alarms are NOT reported if the setting **RRc apnea time [s]** is set to **Off** in the CO₂ setup page and the RRc alarm feature is deactivated. To generate RRc apnea alarms, activate the RRc alarms and select a RRc apnea time.

- The safety and effectiveness of the respiration measurement method in the detection of apnea, particularly the apnea of prematurity and apnea of infancy, has not been established.

- Patient monitors that measure CO₂, anesthetic agents, and/or respiratory mechanics are not intended to be used as an apnea monitor and/or recording device. While these products provide an apnea alarm, that alarm condition is initiated based on the elapsed time since the last breath was detected. Clinical diagnosis of a true apneic event, however, requires multiple physiological signals.

- CO₂ alarms do not activate until the first breath is detected after turning on the monitor or discharging a patient.

- The surface temperature of the sensor may rise to 43 °C (109 °F). Prolonged exposure to the patient's skin may result in a burn.

- Leaks in the breathing circuit (for example, an uncuffed endotracheal tube or a damaged airway adapter) may significantly affect CO₂ measurement values.

- To avoid accidental disconnections, do not apply excessive tension to any sensor cable.

- To prevent leakage, make sure the airway adapter is firmly connected to the breathing circuit.

- Check the CO₂ mainstream sensor for damage before use. A damaged CO₂ sensor may impair electrical isolation or may introduce debris into the breathing circuit.

Note

- Dräger CO₂ accessories that come in contact with the patient do not contain natural rubber latex.

Caution

- For premature infants, do not carry out CO₂ measurements because the CO₂ cuvette significantly increases the dead space.
Connecting the sensor

Before you connect any CO2 hardware, make sure the airway adapter in use matches the airway adapter setting of the Cockpit (see page 419). For example, you should not use a disposable airway adapter if the Cockpit is configured for a reusable airway adapter (and vice versa). Not aligning the adapter with the configuration setting at the Cockpit compromises the displayed CO2 value.

The CO2 cable connects directly to the M540.

1. Connect the CO2 sensor cable connector (B) to the yellow CO2 connector (A) on the M540.
2. Select a suitable mainstream airway adapter (C) whose windows are clean and dry (replace the adapter if necessary).
3. Insert the airway adapter (E) between the endotracheal tube adapter (F) and the ventilator Y-piece (D).
4. Snap the mainstream airway adapter (C) firmly into the airway adapter and make sure that the cable is directed away from the patient.

CAUTION
Always position the sensor windows of the airway adapter vertically to prevent patient secretions from obscuring the adapter windows.
Patient preparation for CO₂ monitoring

The following tips provide optimal monitoring results but must never replace hospital-approved practices or manufacturer’s recommendations.

A default O₂ concentration of 21 % (the percentage of oxygen in ambient air) for all CO₂ measurements is assumed. If the patient is receiving supplemental oxygen or N₂O or Heliox, select the gas that is being administered in the CO₂ setup page. Make sure to manually adjust the atmospheric pressure to the actual measurement value. Automatic barometric pressure compensation is not provided. Failure to compensate for supplemental gases results in inaccurate measurement values.

When switching adapter types (from reusable to disposable or adult to pediatric, or vice versa) you do not have to re-zero a Dräger sensor. If the sensor window is clean and the correct sensor type is selected under the Airway adapter Biomed setting, only zero a Dräger sensor when the measurement value is suspect or when prompted to re-zero.
CO2 display

On the Cockpit, the CO2 display consists of:
- A CO2 parameter box
- A CO2 waveform (capnogram)

CO2 parameter box

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The CO2 parameter box contains the following elements:

A etCO2 (end-tidal CO2) label
B Unit of measure (can be activated/deactivated)
C inCO2 label (inspired CO2)
D inCO2 value – the level of CO2 in the airway during inspiration, taken as the minimum value during the previous measurement interval
E Upper/lower alarm limits or crossed triangle symbols when alarms are deactivated
F RRc (respiratory rate) parameter label
G RRc value – respiratory rate derived from the CO2 signal
H etCO2 value – highest CO2 value in the airway during expiratory period

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.
Carbon dioxide concentrations (CO₂)

Capnograms

The Cockpit also displays an instantaneous CO₂ waveform or capnogram.

A Expiratory or alveolar plateau (level of CO₂ in lungs ceases to increase significantly)
B End-tidal concentration point (end of expiration phase, where CO₂ is measured)
C Onset of inspiration phase
D Onset of expiratory phase
E Baseline during inspiration

Troubleshooting

In addition to evaluating the clinical status of a patient, capnograms can help troubleshoot problems with equipment.

The following table shows how capnograms can be used to identify common problems.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cause</th>
<th>Capnogram</th>
</tr>
</thead>
</table>
| Alveolar plateau showing a downward slope that merges with a descending limb. | - Inadequate seal around the endotracheal tube
- Leaky or deflated endotracheal or tracheostomy cuff
- Artificial airway that is too small for the patient | ![Capnogram Image] |
Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Cause</th>
<th>Capnogram</th>
</tr>
</thead>
</table>
| Elevated waveform baseline with corresponding increase in CO2 level. | Rebreathing due to one of the following causes:
 - Disposable airway adapter is used although the Cockpit is configured for the reusable adapter type
 - Contaminated airway adapter (dirty window)
 - CO2 zero drift
 - Insufficient expiratory time
 - Faulty expiratory valve
 - Inadequate inspiratory flow
 - Malfunction of a CO2 absorber system
 - Partial rebreathing circuits | ![Capnogram](image1.png) |
| Change in slope of ascending limb. Possible absence of an alveolar plateau. | Obstruction caused by one of the following:
 - Partial obstruction in expiratory limb of breathing circuit
 - Foreign body in upper airway
 - Partially kinked or occluded artificial airway
 - Herniated endotracheal or tracheostomy tube cuff
 - Bronchospasm | ![Capnogram](image2.png) |
| Elevated baseline, with pronounced slope on descending limb |
 - Faulty ventilator circuit valve
 - Rebreathing (see above) | ![Capnogram](image3.png) |
Accessing the CO₂ settings

- Select the CO₂ parameter box to select the CO₂ page directly.

or

1. Select Sensor parameters... from the main menu bar.
2. Select the CO₂ tab to access the CO₂ page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

The top portion of the setup page contains the Auto set and Alarm buttons for configuring the alarm functions. For detailed alarm setup information, see "Configuring the alarm settings for a patient" on page 113.

For the inCO₂ parameter, you can only adjust the upper alarm limit. In addition, the Auto set function does not apply to this parameter.

CO₂ parameter setup functions

All CO₂ setup functions take place in the CO₂ page. Before you connect any CO₂ hardware, make sure the airway adapter that is used matches the airway adapter setting at the Cockpit (see page 419).

NOTE

The sensor must be removed from the airway adapter before zeroing. The sensor is zeroed in room air. Do not breathe on the airway adapter during zeroing.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>None</td>
<td>Zeroes the CO₂ sensor if necessary. The CO₂ sensor stores a new zero point for CO₂ measurements.</td>
</tr>
</tbody>
</table>
Carbon dioxide concentrations (CO₂)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>– 0 to 40 mmHg (default), 0 to 60 mmHg, 0 to 80 mmHg, 0 to 100 mmHg</td>
<td>Adjusts the size of the CO₂ waveform.</td>
</tr>
<tr>
<td></td>
<td>– 0 to 5 kPa (default), 0 to 8 kPa, 0 to 12 kPa, 0 to 16 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 0 to 5 % (default), 0 to 8 %, 0 to 12 %, 0 to 16 %</td>
<td></td>
</tr>
<tr>
<td>Atm. pressure</td>
<td>570 to 800 mmHg, Default: 760 mmHg</td>
<td>Determines the atmospheric pressure setting of the sensor and compensates for pressure effects. Failure to compensate for pressure can cause inaccurate measurements.</td>
</tr>
<tr>
<td>Gas compensation</td>
<td>Air (default), N₂O/O₂, O₂>50%, Heliox</td>
<td>Compensates for supplemental oxygen or N₂O or Heliox. Failure to compensate for supplemental oxygen can cause inaccurate measurements.</td>
</tr>
<tr>
<td>RRc apnea time [s]</td>
<td>Off (default), 10, 15, 20, 25, 30 s</td>
<td>Specifies the time the M540 waits before reporting a cessation of breathing as an apnea event.</td>
</tr>
<tr>
<td>Apnea archive</td>
<td>Off, Record, Store (default), Str./ Rec.</td>
<td>Determines what happens in response to an apnea.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow (default), light blue, purple, orange, white.</td>
<td>Determines the color of the waveforms and parameter labels/values.</td>
</tr>
</tbody>
</table>
External Device – Bispectral index (BIS)

Overview of BIS monitoring 326
Supported parameters and settings 326

BIS precautions ... 327
Device compatibility 327

BIS display ... 327
BIS parameter box 327
Waveforms ... 329

Accessing the BIS settings 330

BIS parameter setup functions 330
BIS Show all page 330
Overview of BIS monitoring

The Cockpit acquires data from the Aspect BIS Vista Complete monitoring system using an RS232 connection.

BIS monitoring provides the level of consciousness using EEG electrodes that are affixed to the patient’s forehead. The BIS value guides the clinician in administering the correct level of anesthetic agents to achieve the correct level of sedation.

NOTE
Waveforms are not supported on recordings.

BIS monitoring is available for adult and pediatric patients. It is not available in neonatal mode.

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11.

For detailed information and technical specifications regarding BIS monitoring with the BIS VISTA devices, refer to the documentation provided by the manufacturer.

Supported parameters and settings

- **BIS** – Bispectral index
- **EMG** – Electromyograph indicator
- **SQI** – Signal quality index
- **BSR** – Suppression ratio
- **PWR** – Total signal power
- **SEF** – Spectral edge frequency
- **BCT** – Burst count
- **Smoothing rate setting**

All supported BIS parameters are trended as graphical and tabular trends. For more information (see page 159).

The **Smoothing rate** setting and all of the BIS parameters are displayed in the **Show all** page (see page 330).

All BIS parameters are supported on the network and available for export protocol.

The **Smoothing rate** setting is supported on the network but it is not available for export protocol.
BIS precautions

WARNING
When connecting a third-party device, verify its proper operation before clinical use. Refer to the instructions for use of the third-party device for complete instructions. For further questions, contact your local representative.

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions.
Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to "Safe connection with other electrical equipment" on page 13 of these instructions for use for information on how to connect devices safely.

WARNING
The following section lists all of the external devices and related software versions that Dräger has validated. Dräger cannot make any claim for the reliability of the data for subsequent or previous software versions or for any devices that have not been validated. In the interest of patient safety and device performance, do not connect devices to the monitor which have not been approved by Dräger. The hospital is responsible for contacting Dräger to determine the compatibility and warranty status of any connection made to another manufacturer's medical devices.

Device compatibility
The Cockpit supports the Aspect BIS Vista Complete 2 channel monitor with software version 3.00.

BIS display

On the Cockpit, the BIS x display consists of:
- BISx parameter box
- 1 EEG waveform

BIS parameter box

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

BIS parameter boxes report parameter values. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The BIS parameter box contains the following elements:
External Device – Bispectral index (BIS)

EMG bar graph
The EMG bar graph consists of 5 tic marks. As the amplitude increases, more tic marks are filled in white.

A First section is filled in – 30 to 38 dB
B Second section is filled in – 39 to 47 dB
C Third section is filled in – 48 to 55 dB
D All sections filled in – > 55 dB

NOTE
If the SQI value is less than 15%, the parameter values for BIS, BSR, BCT, SEF, and PWR will be replaced by *** identifying them as unreliable.

If the SQI value falls between 15% and 50% a question mark appears next to the BIS value indicating the value may be unreliable.

If BSR is less than 5%, the BCT value will be replaced by *** identifying it as unreliable.
SQI bar graph

The SQI bar graph consists of 5 bars. The more bars are filled in green, the better the quality of the signal.

A SQI value between 0 and 20
B SQI value between 21 and 40
C SQI value between 41 and 60
D SQI value between 61 and 80
E SQI value between 81 and 100

Waveforms

One EEG waveform (labelled as EEG T) is displayed next to the BIS parameter box.
External Device – Bispectral index (BIS)

Accessing the BIS settings

- Select the BIS parameter box to select the BIS page directly.

or
 1 Select Sensor parameters... from the main menu bar.
 2 Select the BIS tab to access the BIS page.

- If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

BIS parameter setup functions

All BIS setup functions take place in the BIS page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale[uV]</td>
<td>5, 10, 25, 50, 100 (default), 250 µV</td>
<td>Selects the scale of the EEG T waveform.</td>
</tr>
<tr>
<td>Smoothing rate [s]</td>
<td>Informational data only</td>
<td>Not applicable</td>
</tr>
<tr>
<td>BIS secondary parameter</td>
<td>BSR, BCT (default), SEF, PWR</td>
<td>Selects a secondary parameter and assigns it to the BIS parameter box (see page 327).</td>
</tr>
<tr>
<td>No alarm signaling for this device.</td>
<td>Informational message that no visual or acoustic alarm signals are available on the Cockpit</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

BIS Show all page

This page displays all supported BIS parameters, settings, labels and the units of measure where appropriate.
External Device – Neuromuscular transmission (NMT)

Overview of NMT monitoring 332
Supported parameters 332
Supported modes 332
Supported settings 332

NMT precautions 333
Device compatibility 333

NMT display 333
NMT parameter box (single mode) 334
NMT parameter box (PTC mode) 334
NMT parameter box (TOF/TOFS mode) 335

Printing NMT information 336

Accessing the NMT settings 336

The NMT page 337
NMT parameter functions and settings. 338
Overview of NMT monitoring

The Cockpit supports communication with third-party neuromuscular transmission devices using an RS232 connection.

NMT monitoring measures the level of muscle relaxation of patients under the influence of neuromuscular blocking agents. By using an electrical stimulus of a peripheral nerve, the muscle response (thumb twitch) and the skin temperature can be measured.

NMT monitoring is available for adult, pediatric, and neonatal patients.

Before performing any monitoring functions, refer to the section “For your safety and that of your patients” on page 11.

For detailed information and technical specifications regarding NMT monitoring, refer to the documentation provided by the manufacturer of the NMT device.

Supported parameters

The following parameters from the NMT device are supported:

- Start NMT – Thermistor temperature (°C)
- Single-Twitch height (%)
- TOF Ratio – Train of Four ratio (%)
- TOF-Cnt – Train of Four count (no unit of measure)
- PTC – Post Tetanic Count (no unit of measure)

All NMT parameters are trended and available on the Infinity network and export protocol.

All trended NMT parameters are available for network transfer. For more information (see page 159).

Supported modes

The following modes from the NMT device are supported:

- Single mode – measures the muscle twitch in response to a single stimulation pulse. 1 Hz and 0.1 Hz stimulation is supported.
- TOF (Train of Four) – A sequence of four stimulation pulses is sent and the magnitude of the muscle twitch after each individual pulse is measured.
- TOFs (slow Train of Four) – the user sets the frequency of the stimulation of four pulses.
- PTC (Post Tetanic Count) – counts the responses of tetanic stimulation followed by single stimuli at one-second intervals

NMT modes are not displayed. Furthermore, they are not available on the network and are not available for export protocol.

Supported settings

The following settings from the NMT device are supported:

- Stimulation current mode – determines if the stimulation current was obtained automatically or set by the user manually.
- Stimulation current – reports the current in mA
- Pulse width – reports the width of the pulse microseconds
- Sensitivity – reports the acceleration transducer sensitivity. This setting is for optimizing the twitch height percentage manually.

All NMT settings are broadcast to the Infinity network. They are not available for Export protocol.
NMT precautions

WARNING
When connecting a third-party device, verify its proper operation before clinical use. Refer to the instructions for use of the third-party device for complete instructions. For further questions, contact your local representative.

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions. Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to "Safe connection with other electrical equipment" on page 13 of these instructions for use for information on how to connect devices safely.

WARNING
The following section lists all of the external devices and related software versions that Dräger has validated. Dräger cannot make any claim for the reliability of the data for subsequent or previous software versions or for any devices that have not been validated. In the interest of patient safety and device performance, do not connect devices to the monitor which have not been approved by Dräger. The hospital is responsible for contacting Dräger to determine the compatibility and warranty status of any connection made to another manufacturer’s medical devices.

Device compatibility

The Cockpit is compatible with the following NMT devices:

- TOF scan - minimum version 1.5.8
- TOF Watch SX

NMT display

On the Cockpit, the NMT display consists of three NMT parameter boxes. The content depends on one of the following modes which is selected at the NMT device:

- Single
- TOF Ratio or TOF Cnt (parameter box display depends on the selected mode)
- PTC

NOTE
The following diagrams show a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate certain technical information such as signal strength and time stamps (see page 334 for detailed information).
NMT parameter box (single mode)

The NMT parameter box in 'Single' mode contains the following elements:

A Neuromuscular transmission label (NMT)
B Bar graph indicating the relative magnitude of the twitch response
C NMT mode label Single
D Skin temperature value (display depends on menu setting - see page 337)
E Time stamp of the current value (the time stamp identifies the time the Cockpit received the value from the connected device)
F No cal.! message to indicate that the NMT device was not calibrated
G Single twitch value

NMT parameter box (PTC mode)

The NMT parameter box in PTC mode contains the following elements:

A Neuromuscular transmission label (NMT)
B NMT mode label PTC
C Time stamp of current value (display depends on menu setting - see page 337)
D PTC value
E 15 individual amplitude bar graphs indicating the number of twitches
NMT parameter box (TOF/TOFS mode)

The NMT parameter box in 'TOF /TOFs' mode is very similar and contains the following elements:

A Neuromuscular transmission label (NMT)
B NMT parameter label TOF Ratio or TOF Cnt

TOF Ratio appears when the TOF count is equal to four twitches and the amplitude of the first twitch is ≥ 20%.

TOF Cnt appears when the TOF count is ≤ than three twitches or there are four twitches and the magnitude of the first twitch is < 20%.

C Time stamp of the current value (the time stamp identifies the time the Cockpit received the value from the connected device)

D Count down time bar and value indicating the remaining time in the interval before the start of the next set of measurements - displayed only in TOFs mode

The label **auto 15 s** appears instead of the count down bar when the user initiates automatic TOF.

E TOF Ratio / TOF-Cnt value

F 4 individual amplitude bar graphs indicating the number of TOF counts (the last bar shows the magnitude of the fourth twitch).
External Device – Neuromuscular transmission (NMT)

Printing NMT information

You can print a report of all NMT settings and up to the latest 500 measurements.

Printing NMT settings and measurements

1. Select the NMT parameter box to select the NMT page directly.
2. Select the Print button in the lower left corner of the NMT page.

or

1. Select Sensor parameters... from the main menu bar.
2. Select the NMT tab to access the NMT page.
3. Select the Print button in the lower left corner of the NMT page.

Accessing the NMT settings

- Select the NMT parameter box to select the NMT page directly.

or

1. Select Sensor parameters... from the main menu bar.
2. Select the NMT tab to access the NMT page.
 If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

336 Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
The NMT page

The NMT page displays the settings of the NMT device. Except for the Display temperature and the Print buttons these settings are informational only and cannot be changed on the Cockpit. The NMT page also displays the latest NMT measurement values collected. A total of 500 measurements can be reviewed and are accessible with the scroll bar. Once the data base reaches 500 measurements, the oldest measurement is replaced by the most recent one.

Unlike trends, the measurements on the NMT page cannot be transferred.

The following diagram depicts the NMT page.

A Display temperature button for activating or deactivating the temperature display in the NMT parameter box.
B Settings panel – displays the settings of the connected third-party NMT device.
C Measurements panel – reports the last 500 NMT measurements (see table ‘The NMT page’ on page 337).
D Scroll bar for scrolling through the collected NMT data.
E Print button for printing the measurements and settings.
F No alarm signaling for this device. – Informational message.
NMT parameter functions and settings

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display temper-</td>
<td></td>
<td>Controls the temperature display in the NMT parameter box.</td>
</tr>
<tr>
<td>ature</td>
<td>– On</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Off (Default)</td>
<td></td>
</tr>
<tr>
<td>Stim current</td>
<td>0 to 60 mA (no default)</td>
<td>Displays the stimulation current of the NMT device.</td>
</tr>
<tr>
<td>Stim current mode</td>
<td>Auto</td>
<td>The NMT device establishes a supramaximal current during the first measurement and uses it for subsequent measurements.</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
<td>The stimulation current was selected manually.</td>
</tr>
<tr>
<td>Sensitivity (1-512)</td>
<td>Between 1 and 512 (no default)</td>
<td>Displays the sensitivity of the NMT device.</td>
</tr>
<tr>
<td>Pulse width</td>
<td>200 or 300 µs</td>
<td>Determines the width of the pulse.</td>
</tr>
<tr>
<td>Print</td>
<td></td>
<td>Prints the current NMT settings and up to 500 of the most recent measurements.</td>
</tr>
<tr>
<td>No alarm signal-ing for this device.</td>
<td></td>
<td>Informational message that no visual or acoustic alarm signals are available on the Cockpit.</td>
</tr>
</tbody>
</table>
External device – continuous cardiac output (CCO)

Overview of CCO monitoring 340
External device alarms 340
Reference handbook . 340
Supported parameters 341

CCO precautions . 343
CCO/SvO2 display . 344
CCO/SvO2 parameter box 344

Viewing the CCO/SvO2 parameters 344
Accessing the CCO/SvO2 settings 345
SvO2 parameter setup functions 345
External device – continuous cardiac output (CCO)

Overview of CCO monitoring

With the device connectivity option, the Cockpit can display parameter values from a continuous cardiac output device. Within 30 seconds of connecting the device, the data appear at the Cockpit. The following cardiac output devices are supported:

- Vigilance II SvO2/CCO
- Vigileo SvO2/CCO
- EV1000

The CCO monitoring functions are configurable in the parameter-specific setup page (see page 345).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11.

External device alarms

If the external device alarm feature is activated at the Cockpit (see page 407) and an external device is disconnected from the Cockpit, the following happens at the Cockpit and at the ICS when the patient is admitted at the ICS:

- An alarm tone of low priority sounds.
- The message *External device disconnected* appears.

Reference handbook

For a complete list of available parameters contact your DrägerService representative.
Supported parameters

The following table lists the supported parameters displayed on the Cockpit originating from external CCO devices that are supporting and monitoring these parameters. The range and resolution for all parameters are provided by the CCO device. All of the parameters are displayed in the **Show all** page (see page 344).

<table>
<thead>
<tr>
<th>Label</th>
<th>Parameter</th>
<th>Unit of measure</th>
<th>Comments</th>
<th>Cockpit Trends page</th>
<th>Originating from which device</th>
</tr>
</thead>
<tbody>
<tr>
<td>SvO2</td>
<td>Venous oxygen saturation</td>
<td>%</td>
<td>Not applicable</td>
<td>Continuous trend</td>
<td>Vigilance II, Vigileo, EV1000</td>
</tr>
<tr>
<td>CCO</td>
<td>Continuous cardiac output</td>
<td>L/min</td>
<td>Not applicable</td>
<td>Continuous trend</td>
<td></td>
</tr>
<tr>
<td>CCI</td>
<td>Continuous cardiac output index</td>
<td>L/min/m²</td>
<td>Calculated value on Cockpit; requires height and weight values from the Cockpit.</td>
<td>Continuous trend</td>
<td></td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic vascular resistance</td>
<td>dyn x s/cm⁵</td>
<td>Calculated value at the Cockpit; requires the values for ART M and CVP from the Cockpit.</td>
<td>Continuous trend</td>
<td></td>
</tr>
<tr>
<td>SVRI</td>
<td>Systemic vascular resistance index</td>
<td>dyn x s/cm⁵/m²</td>
<td>Calculated value on Cockpit; requires height and weight values from the Cockpit.</td>
<td>Continuous trend</td>
<td></td>
</tr>
<tr>
<td>SV</td>
<td>Stroke volume</td>
<td>mL</td>
<td>Calculated value on Cockpit; requires heart rate to be monitored.</td>
<td>Continuous trend</td>
<td></td>
</tr>
<tr>
<td>SVI</td>
<td>Stroke volume index</td>
<td>mL/m²</td>
<td></td>
<td>Continuous trend</td>
<td></td>
</tr>
</tbody>
</table>
External device – continuous cardiac output (CCO)

<table>
<thead>
<tr>
<th>Label</th>
<th>Parameter</th>
<th>Unit of measure</th>
<th>Comments</th>
<th>Cockpit Trends page</th>
<th>Originating from which device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tblood</td>
<td>Blood temperature</td>
<td>°C or °F</td>
<td>Unit of measure is determined by the unit of measure selected at the Cockpit</td>
<td>Continuous trend</td>
<td>Vigilance II and EV1000</td>
</tr>
<tr>
<td>VO2</td>
<td>Oxygen consumption</td>
<td>mL/min</td>
<td>Not applicable</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>DO2</td>
<td>Oxygen delivery</td>
<td>mL/min</td>
<td>Not applicable</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>SaO2</td>
<td>Arterial oxygen saturation</td>
<td>%</td>
<td>Not applicable</td>
<td>Continuous trend</td>
<td>Vigilance II</td>
</tr>
<tr>
<td>EDV</td>
<td>End diastolic volume</td>
<td>mL</td>
<td>Not applicable</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>EDVI</td>
<td>End diastolic volume index</td>
<td>mL/m²</td>
<td>Calculated value on Cockpit; requires height and weight values from the Cockpit</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>ESV</td>
<td>End systolic volume</td>
<td>mL</td>
<td>Not applicable</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>ESVI</td>
<td>End systolic volume index</td>
<td>mL/m²</td>
<td>Calculated value on Cockpit; requires height and weight values from the Cockpit</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>Ejection fraction</td>
<td>%</td>
<td>Not applicable</td>
<td>Not trended</td>
<td></td>
</tr>
<tr>
<td>SVV</td>
<td>Stroke volume variation</td>
<td>%</td>
<td>Calculated parameter on Cockpit; if required parameters are not monitored or entered, the parameter appears blank</td>
<td>Continuous trend</td>
<td>Vigiloe and EV1000</td>
</tr>
</tbody>
</table>
CCO precautions

WARNING
To reduce the risk of patient injury due to electrical shock, always position the external device connectivity cable as far from the patient as possible. Make sure that any cables or other conducting devices do not come in contact with the patient. The device connectivity cable is electrically isolated from the monitor and any peripheral devices, but the cable’s enclosure is not electrically isolated from the peripheral device itself.

WARNING
The Cockpit does not annunciate alarms for external device parameters.

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions.

Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to “Safe connection with other electrical equipment” on page 13 of these instructions for use for information on how to connect devices safely.
CCO/SvO2 display

On the Cockpit, the CCO/SvO2 display consists of a parameter box.

CCO/SvO2 parameter box

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The CCO/SvO2 parameter box contains the following elements:

Viewing the CCO/SvO2 parameters

The Show all page displays the values of the currently monitored CCO/SvO2 parameters.

To access the CCO/SvO2 parameters

1. Select the Sensor parameters... button from the main menu bar.

2. Select the CCO tab. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

3. Select the Show all tab.

or

1. Select the Trends/Data... button from the main menu bar.

2. Select the Hemo tab.

3. Select the Show all tab.
External device – continuous cardiac output (CCO)

Accessing the CCO/SvO2 settings

1. Select the **Sensor parameters...** button from the main menu bar.

2. Select the **CCO** tab. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

SvO2 parameter setup functions

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter 1</td>
<td>SvO2 (default), Tblood, CCO, CCl, VO2, DO2, SaO2, SVR, EDVI, ESV, ESVI, EF, SV, SVV</td>
<td>Selects the primary parameter in the CCO parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>SvO2, Tblood, CCO (default), CCl, VO2, DO2, SaO2, SVR, EDVI, ESV, ESVI, EF, SV, SVV</td>
<td>Selects the secondary parameter in the CCO parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>SvO2, Tblood, CCO, CCl, VO2, DO2, SaO2, SVR (default), SVRI, EDVI, ESV, ESVI, EF, SV, SVI, SVV</td>
<td>Selects the third parameter in the CCO parameter box.</td>
</tr>
<tr>
<td>CCO mini trend</td>
<td>SvO2, SVV, CCO (default), CCl, SVR, SVRI, SV, SVI</td>
<td>Selects the parameter to be included in the mini trend.</td>
</tr>
</tbody>
</table>
External devices – Medibus.X devices

External device monitoring 348
External device alarms 348
Precautions .. 349
Compatible Medibus.X devices 349

Supported Medibus.X ventilator and anesthesia data 350
Supported parameters on the Cockpit 350
Supported waveforms 356

Viewing Medibus.X parameter data 357
Parameter boxes 357
Viewing loops 358
The Show all pages 359

Accessing parameter setup functions 360
Paw setup functions 361
Ventilator parameter setup functions 361
CO₂ setup functions 364
External device monitoring

The device connectivity option enables the Cockpit to partner with external Medibus.X-compatible devices to provide the following functionality:

- Display parameter values, waveforms, and loops from ventilators and anesthesia machines
- Trend parameters
- Show all pages for ventilators that can be configured
- Configurable display of parameter boxes for ventilators and anesthesia machines

Within 30 seconds of connecting a device, the data appear at the Cockpit.

NOTE
Ventilation waveforms are not supported on recordings.

Before performing any monitoring functions, refer to the section “For your safety and that of your patients” on page 11. For device-specific error messages, refer to the instructions for use of the connected ventilator.

NOTE
When connecting a ventilator that does not support CO2 monitoring, the Cockpit may still display a CO2 tab in the Ventilator dialog window.

External device alarms

Alarms from the ventilator are transmitted to the Infinity network and made available for alarm annunciation at the ICS. For more information, refer to the instructions for use Infinity CentralStation.

If the external device alarm feature is activated at the Cockpit (see page 407) and an external device is disconnected from the Cockpit, the following happens at the Cockpit and at the ICS when the patient is admitted at the ICS:

- An alarm tone of low priority sounds.
- The message **External device disconnected** is displayed.
Precautions

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions.

Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to "Safe connection with other electrical equipment" on page 13 of these instructions for use for information on how to connect devices safely.

WARNING
The following table lists all of the external devices and related software versions that Dräger has validated. Dräger cannot make any claim for the reliability of the data for subsequent or previous software versions or for any devices that have not been validated. In the interest of patient safety and device performance, do not connect devices to the monitor which have not been approved by Dräger. The hospital is responsible for contacting Dräger to determine the compatibility and warranty status of any connection made to another manufacturer’s medical devices.

Compatible Medibus.X devices

The Cockpit device connectivity interface allows data from various standalone devices to display parameters, settings and waveforms on the Cockpit.

<table>
<thead>
<tr>
<th>Supported device</th>
<th>Supported software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilators</td>
<td></td>
</tr>
<tr>
<td>Dräger Evita V500</td>
<td>2.31</td>
</tr>
<tr>
<td>Dräger Babylog VN500</td>
<td>2.31</td>
</tr>
<tr>
<td>Savina 300</td>
<td>4.02</td>
</tr>
<tr>
<td>Carina</td>
<td>3.21</td>
</tr>
<tr>
<td>Dräger Evita V300</td>
<td>2.31</td>
</tr>
<tr>
<td>Oxylog 3000+</td>
<td>1.04</td>
</tr>
<tr>
<td>Anesthesia machines</td>
<td></td>
</tr>
<tr>
<td>Primus family, Apollo</td>
<td>4.5</td>
</tr>
<tr>
<td>Infinity Perseus A500</td>
<td>1.11</td>
</tr>
<tr>
<td>Zeus IE</td>
<td>1.04</td>
</tr>
</tbody>
</table>

The following table lists which devices and corresponding software versions are supported with Medibus.X version 1.0.3.
Supported Medibus.X ventilator and anesthesia data

The Medibus.X ventilators and anesthesia devices send parameters, settings, modes, and waveforms are broadcast to the network via the Cockpit. However, not all parameters are displayed at the Cockpit (see table below for supported parameters). In addition, the Cockpit refuses all low priority alarm messages but broadcasts all medium-priority and high-priority alarm messages to the Infinity network.

Refer to the RS-232 export handbook for information on which parameters are available for export protocol. The RS-232 export handbook is available in English only.

Supported parameters on the Cockpit

The following table lists which Medibus.X ventilator and anesthesia parameters are displayed and trended on the Cockpit. Refer to page 349 for a list of supported ventilators and anesthesia machines and the compatible software versions.

<table>
<thead>
<tr>
<th>Parameter label</th>
<th>Description</th>
<th>Unit of measure</th>
<th>Displayed in Ventilation or Anesthesia Show all page (see page 359)</th>
<th>Cockpit Trends page</th>
<th>Available for display in parameter box Yes/No?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cons</td>
<td>Accumulated air consumption</td>
<td>L</td>
<td>Ventilation</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>Cdyn</td>
<td>Dynamic compliance</td>
<td>L/bar</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>CO2 slope</td>
<td>Increase of measured CO2 value in phase III of the capnogram</td>
<td>mmHg/L, kPa/L, Vol%L</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>C20/Cdyn</td>
<td>Ratio of compliance during the last 20% of inspiration of dynamic compliance</td>
<td>No units</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>DCO2</td>
<td>CO2 elimination coefficient during HFO</td>
<td>10*ml^2/s</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Des cons</td>
<td>Desflurane consumption</td>
<td>mL</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>Elastance</td>
<td>mbar/L</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Parameter label</td>
<td>Description</td>
<td>Unit of measure</td>
<td>Displayed in Ventilation or Anesthesia Show all page (see page 359)</td>
<td>Cockpit Trends page</td>
<td>Available for display in parameter box Yes/No?</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>EIP</td>
<td>End-inspiratory pressure</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Enf cons</td>
<td>Enflurane consumption</td>
<td>mL</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>etCO2</td>
<td>End-tidal carbon dioxide concentration</td>
<td>%</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>etDes</td>
<td>End-tidal desflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etEnf</td>
<td>End-tidal enflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etHal</td>
<td>End-tidal halothane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etIso</td>
<td>End-tidal isoflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etN2O</td>
<td>End-tidal nitrous oxide concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etO2</td>
<td>End-tidal oxygen concentration</td>
<td>%</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>etSev</td>
<td>Endtidal sevoflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>FiO2</td>
<td>Inspiratory oxygen fraction</td>
<td>%</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes (appears as inO2)</td>
</tr>
<tr>
<td>FlowDev</td>
<td>Average device flow</td>
<td>L/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Hal cons</td>
<td>Accumulated halothane consumption</td>
<td>mL</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>inHal</td>
<td>Inspiratory halothane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>inCO2</td>
<td>Inspiratory carbon dioxide concentration</td>
<td>%</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>Parameter label</td>
<td>Description</td>
<td>Unit of measure</td>
<td>Displayed in Ventilation or Anesthesia Show all page (see page 359)</td>
<td>Cockpit Trends page</td>
<td>Available for display in parameter box Yes/No?</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>I:E I-Part</td>
<td>Inspiratory component</td>
<td>No units</td>
<td>Ventilation</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>I:E E-Part</td>
<td>Expiratory component</td>
<td>No units</td>
<td>Ventilation</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>inEnf</td>
<td>Inspiratory enfurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>inDes</td>
<td>Inspiratory desflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>inN2O</td>
<td>Inspiratory nitrous oxide concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>inIsol</td>
<td>Inspiratory isoflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>inSev</td>
<td>Inspiratory sevoflurane concentration</td>
<td>%</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>Iso cons</td>
<td>Isoflurane consumption</td>
<td>mL</td>
<td>Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>% leak</td>
<td>Leakage minute volume in % of inspiratory minute volume</td>
<td>%</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>MV</td>
<td>Minute volume</td>
<td>L/min</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>MVe</td>
<td>Minute volume, expired</td>
<td>L/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>MVespon</td>
<td>Spontaneous expiratory minute volume</td>
<td>L/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>MVleak</td>
<td>Leakage minute volume</td>
<td>L/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>MVi</td>
<td>Minute volume, inspired</td>
<td>L/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>MVmand</td>
<td>Mandatory minute volume</td>
<td>L/min</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>MVspon</td>
<td>Spontaneous minute volume</td>
<td>L/min</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Parameter label</td>
<td>Description</td>
<td>Unit of measure</td>
<td>Displayed in Ventilation or Anesthesia</td>
<td>Cockpit Trends page</td>
<td>Available for display in parameter box Yes/No?</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>% MVspon</td>
<td>Spontaneous breathing portion of minute volume</td>
<td>%</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>N₂O cons</td>
<td>Accumulated nitrous oxide consumption</td>
<td>L</td>
<td>Anesthesia</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>NIF</td>
<td>Negative inspiratory force</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>ΔO₂</td>
<td>Inspiratory/expiratory oxygen concentration difference</td>
<td>%</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>O₂ cons</td>
<td>Accumulated oxygen consumption</td>
<td>L</td>
<td>Anesthesia</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>P0.1</td>
<td>Occlusion pressure</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>ΔPhf</td>
<td>Pressure amplitude during HFO</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Phigh</td>
<td>Upper pressure level during APRV</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>PIP</td>
<td>Peak inspiratory pressure</td>
<td>mbar</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>Plow</td>
<td>Lower pressure level during APRV</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Pmin</td>
<td>Minimum airway pressure</td>
<td>mbar</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Pmean</td>
<td>Mean airway pressure</td>
<td>mbar</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>Pplat</td>
<td>Plateau pressure</td>
<td>mbar</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td>mbar/L/s</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>r²</td>
<td>Correlation factor</td>
<td>min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>Rpat</td>
<td>Patient airway resistance</td>
<td>mbar/L/s</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
</tr>
<tr>
<td>RR</td>
<td>Respiratory rate</td>
<td>/min</td>
<td>Anesthesia and Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| Parameter label | Description | Unit of measure | Displayed in Ventilation or Anesthesia | Cockpit Trends page | Available for display in parameter box?
---|---|---|---|---|---
RRc | Respiratory rate based on carbon dioxide measurement | /min | Ventilation | Continuous trend | Yes
RRf | Respiratory rate based on volume/flow measurement | /min | Ventilation | Continuous trend | Yes
RRmand | Mandatory respiratory rate | /min | Ventilation and Anesthesia | Continuous trend | No
RRp | Respiratory rate based on pressure | /min | Ventilation | Continuous trend | Yes
RRspn | Spontaneous respiratory rate | /min | Ventilation | Continuous trend | No
RSB | Rapid shallow breathing index | 1/min/L | Ventilation | Continuous trend | No
Sev cons | Sevoflurane consumption | mL | Anesthesia | Continuous trend | No
Tispon | Spontaneous inspiratory time | s | Ventilation | Continuous trend | No
TC | Time constant | s | Ventilation | Continuous trend | No
Tcase | Therapy case duration | min | Anesthesia | Not trended | No
TCe | Expiratory time constant | s | Ventilation | Continuous trend | No
Tlow | Effective expiratory time during APRV/AutoRelease | s | Ventilation | Continuous trend | No
V’CO2 | Carbon dioxide production | mL/min | Ventilation | Continuous trend | No
Vds | Serial dead space volume | mL | Ventilation | Continuous trend | No
Vds/VTe | Ratio of serial dead space volume to expiratory tidal volume | % | Ventilation | Continuous trend | No
<table>
<thead>
<tr>
<th>Parameter label</th>
<th>Description</th>
<th>Unit of measure</th>
<th>Displayed in Ventilation or Anesthesia</th>
<th>Cockpit Trends page</th>
<th>Available for display in parameter box</th>
<th>Yes/No?</th>
</tr>
</thead>
<tbody>
<tr>
<td>V'O2</td>
<td>Oxygen uptake</td>
<td>mL/min</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTACH</td>
<td>Tidal volume</td>
<td>mL</td>
<td>Ventilation and Anesthesia</td>
<td>Continuous trend</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VTCO2</td>
<td>CO₂ production volume per breath</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTe</td>
<td>Expiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VTemand</td>
<td>Mandatory expiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTespon</td>
<td>Spontaneous expiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTespon mean</td>
<td>Expiratory spontaneous mean tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VThf</td>
<td>Tidal volume during HFO</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTi</td>
<td>Inspiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VTimand</td>
<td>Mandatory inspiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTispon</td>
<td>Spontaneous inspiratory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTispon mean</td>
<td>Inspiratory spontaneous mean tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTmand</td>
<td>Mandatory tidal volume</td>
<td>mL</td>
<td>Ventilation</td>
<td>Continuous trend</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note: Only mL is supported (L is supported on source device)
Supported waveforms

The following Medibus.X waveforms are displayed on the Cockpit.

<table>
<thead>
<tr>
<th>Waveform label</th>
<th>Description</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw</td>
<td>Airway pressure</td>
<td>mbar</td>
</tr>
<tr>
<td>Flow</td>
<td>Inspiratory and expiratory flow</td>
<td>L/min</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide concentration</td>
<td>mmHg, kPa, %</td>
</tr>
</tbody>
</table>
Viewing Medibus.X parameter data

The Cockpit displays parameter data originating from connected Medibus.X devices in the following locations:
- Parameter boxes
- Loops pages (see page 358)
- Trends pages (see page 159)
- Show all pages (see 359)

The Cockpit displays the following waveforms, loops, and parameters:
- Airway pressure waveform (Paw) and associated parameter box
- Expiratory flow waveform and associated flow/volume (vent) parameter box
- CO2 waveforms and associated parameter box
- Loops (flow-volume, pressure-volume)

Parameter boxes

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page .

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. The content of a parameter box can be configured. For more information see page 360.

The following diagram shows a typical parameter box for a Medibus.X parameter.

NOTE
The background of the Paw parameter box appears cyan when a ventilator or an anesthesia workstation becomes disconnected.

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 357
Viewing loops

Loops offer important information about the response of the patient to mechanical ventilation. The Cockpit displays loops from supported Medibus.X devices provided the source devices make the data available to the Medibus.X protocol.

Pressure/volume loops illustrate changes in compliance, resistance, and work of breathing. A mechanical breath plots counter-clockwise, while a spontaneous breath plots clockwise. Inspiration starts at a point defined by baseline pressure and the volume level at the beginning of inspiration.

Flow/volume loops also report mechanical and spontaneous breaths. Inspiration begins at the origin and moves upward and clockwise. Expiration plots below the horizontal axis and progresses counter-clockwise to the original starting point.

To view loops

You can view loops from the Ventilator or the Anesthesia workstation tabs. Which tab is displayed depends on whether a ventilator or an anesthesia workstation is connected.

NOTE

Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. The Medibus.X Ventilator tab is the one that has the message Medibus.X ventilator devices displayed as a header on the various pages.

1. Select the Sensor parameters... button on the main menu bar.
2. Select the Ventilator tab or the Anesthesia workstation tab.
3. Select the PV Loop tab to view pressure/volume loops or select the FV Loop tab to view flow/volume loops.
4. Select the Loops tab to view all loops in one dialog window.
5. Select the Loop draw button at the bottom of the pages to choose how many loops are drawn on top of each other before the screen is cleared.
6. Select the Save reference button at the bottom of the page if you want to save a loop for future analysis and comparison.
The **Show all pages**

The **Show all** page displays the values and units of measure of the currently monitored parameters in one screen. The following two **Show all** pages are available:

- Under the **Anesthesia workstation** tab

 NOTE
 Depending on which devices are connected to the Cockpit, two **Ventilator** tabs may be displayed. The Medibus.X **Ventilator** tab is the one that has the message **Medibus.X ventilator devices** displayed as a header on the various pages.

The anesthesia **Show all** page displays the following data:

- Current ventilator measurements
- Current gas measurements
- Current consumption
- Units of measure

The ventilator **Show all** page displays the following data:

- Current ventilator measurements
- Units of measure

The ventilator **Show all** page can be configured (see page 359).

To access the **Show all** pages

You can access the **Show all** page in the **Ventilator** or the **Anesthesia workstation** tabs. Which tab is displayed depends on whether a ventilator or an anesthesia workstation is connected.

NOTE
Depending on which devices are connected to the Cockpit, two **Ventilator** tabs may be displayed. The Medibus.X **Ventilator** tab is the one that has the message **Medibus.X ventilator devices** displayed as a header on the various pages.

1. Select the **Sensor parameters...** button on the main menu bar.
2. Select **Ventilator** or **Anesthesia workstation** > **Show all**. Configuring the ventilator **Show all** page

You can configure the parameter display of the ventilator **Show all** page and adapt it to the parameter set of the connected device.

To configure the ventilator **Show all** page

1. Select the **Sensor parameters...** button on the main menu bar.

Select **Ventilator** > **Configure show all**. A page with twenty-six buttons appears.

NOTE
Depending on which devices are connected to the Cockpit, two **Ventilator** tabs may be displayed. The Medibus.X **Ventilator** tab is the one that has the message **Medibus.X ventilator devices** displayed as a header on the various pages.
2. Press any button to activate a list of available parameters. You can also select None to remove any parameter from being displayed in that space. The parameter selection MV auto, RR auto and VT auto are unique because the associated parameter set varies from device to device. When the Vent parameter display setting Auto is selected, the Cockpit pulls the available parameter from the source device according to the following priority list:

- **MV auto**: MVe, MV, MVi
- **RR auto**: RR, RRf, RRp
- **VT auto**: VTe, VTACH, VTi

3. Select the desired parameter in the list to assign it to the button and to the Show all page.

4. Repeat steps 2 and 3 until the desired configuration for the Show all page is completed.

Accessing parameter setup functions

You can configure the display of ventilation and anesthesia parameters in the following tabs located under the Ventilator or the Anesthesia workstation tabs.

- **Paw**
- **Vent**
- **CO2** (when a ventilator is connected) or **CO2/O2/Agent** (when anesthesia workstation is connected)

1. Select **Sensor parameters...** from the main menu bar.

2. Select the > Ventilator or the Anesthesia workstation tab.

NOTE

Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. The Medibus.X Ventilator tab is the one that has the message Medibus.X ventilator devices displayed as a header on the various pages.

If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: ➔ symbol and the display filter button.

3. Select either the **Paw**, **Vent** or **CO2** or **CO2/O2/Agent** tabs to access the respective setup pages.

NOTE

Most setup functions described in the following tables are available under the Ventilator and the Anesthesia workstation tabs. Exception where a setup function is only available under one tab are noted.
Paw setup functions

See page 360 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw scale</td>
<td>10, 15, 20, 25 (default), 30, 40, 50, 60, 70, 80, 100, 120 mbar</td>
<td>Determines the scale of the displayed Paw waveform.</td>
</tr>
<tr>
<td>Parameter 1</td>
<td>PEEP, PIP (default), Pmean, Pplat</td>
<td>Selects the primary parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>PEEP, PIP, Pmean (default), Pplat</td>
<td>Selects the second parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>PEEP (default), PIP, Pmean, Pplat</td>
<td>Selects the third parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white</td>
<td>Determines the color of all Medibus.X parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>

Ventilator parameter setup functions

See page 360 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow scale</td>
<td>5, 10, 15, 20 (default in neonatal mode), 35, 50, 100 (default in adult and pediatric mode), 150, 200 L/min</td>
<td>Determines the scale of the displayed Flow waveform.</td>
</tr>
<tr>
<td>Vol scale</td>
<td>5, 10, 25, 50 (default in neonatal mode), 75, 100, 250, 500, 1000 (default in pediatric and adult mode), 1500 mL</td>
<td>Determines the scale of the displayed Volume waveform.</td>
</tr>
</tbody>
</table>
Selection

<table>
<thead>
<tr>
<th>Vent parameter display</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Auto (default)</td>
<td></td>
<td>Determines whether the selected parameters for display in the parameter box are selected manually or automatically. With the setting Manual, the parameter for each parameter box location are selected manually. With the setting Auto, the parameter supported by the source device is assigned to the parameter box location.</td>
</tr>
<tr>
<td>– Manual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter 1

<table>
<thead>
<tr>
<th>MVe (default), MVi, VTe, VTACH, VTI, RR, RRf, RRp</th>
<th>selects the primary parameter in the ventilation parameter box when the Vent parameter display setting is set to Manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>– MV auto (default) – (available parameter depends on source device: MVe, MVi)</td>
<td>selects the primary parameter in the ventilation parameter box automatically when the Vent parameter display setting is set to Auto. The specific parameter supported by the source device is assigned automatically according to the priority list.</td>
</tr>
<tr>
<td>– RR auto – (available parameter depends on source device: RR, RRf, RRp)</td>
<td></td>
</tr>
<tr>
<td>– VT auto – (available parameters depend on source device: VTe, VTACH, VTI)</td>
<td></td>
</tr>
</tbody>
</table>

Parameter 2

<table>
<thead>
<tr>
<th>MVe, MVi, VTe, VTACH, VTI, RR (default), RRf, RRp</th>
<th>selects the second parameter in the ventilation parameter box when the Vent parameter display setting is set to Manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>– MV auto – (available parameter depends on source device: MVe, MVi)</td>
<td>selects the primary parameter in the ventilation parameter box automatically when the Vent parameter display setting is set to Auto. The specific parameter supported by the source device is assigned automatically according to the priority list.</td>
</tr>
<tr>
<td>– RR auto (default) – (available parameter depends on source device: RR, RRf, RRp)</td>
<td></td>
</tr>
<tr>
<td>– VT auto – (available parameters depend on source device: VTe, VTACH, VTI)</td>
<td></td>
</tr>
</tbody>
</table>
External devices – Medibus.X devices

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter 3</td>
<td>MVe, MVi, VTe (default), VTACH, VTi, RR, RRf, RRp</td>
<td>Selects the third parameter in the ventilation parameter box when the Vent parameter display setting is set to Manual.</td>
</tr>
<tr>
<td>- MV auto</td>
<td>(available parameter depends on source device: MVe, MV, MVi)</td>
<td>Selects the primary parameter in the ventilation parameter box automatically when the Vent parameter display setting is set to Auto. The specific parameter supported by the source device is assigned automatically according to the priority list.</td>
</tr>
<tr>
<td>- RR auto</td>
<td>(available parameter depends on source device: RR, RRf, RRp)</td>
<td></td>
</tr>
<tr>
<td>- VT auto (default)</td>
<td>(available parameters depends on source device: VTe, VTACH, VTi)</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white.</td>
<td>Determines the color of all ventilation parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>
CO2 setup functions

See page 360 for information on how to access this page. The tab is labelled CO2 when a ventilator is connected. The tab is labelled CO2/O2/Agent when an anesthesia workstation is connected.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 Scale</td>
<td>- 0 to 40 (default), 0 to 60, 0 to 80, 0 to 100 mmHg</td>
<td>Determines the scale of the displayed CO2 waveform.</td>
</tr>
<tr>
<td></td>
<td>- 0.0 to 5.0 (default), 0.0 to 8.0, 0.0 to 12.0, 0.0 to 16.0 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0 to 5 (default), 0 to 8, 0 to 12, 0 to 16 %</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow (default), light blue, purple, orange, white.</td>
<td>Determines the color of the CO2 parameter box and waveform.</td>
</tr>
</tbody>
</table>

etCO2 pbox	- etCO2 (default)	Determines the appearance of the etCO2 parameter box.
	- etCO2/O2	
CO2 Scale	- 0 to 40 (default), 0 to 60, 0 to 80, 0 to 100 mmHg	Determines the scale of the displayed CO2 waveform.
	- 0.0 to 5.0 (default), 0.0 to 8.0, 0.0 to 12.0, 0.0 to 16.0 kPa	
	- 0 to 5 (default), 0 to 8, 0 to 12, 0 to 16 %	
Color	Red, green, blue, yellow (default), light blue, purple, orange, white.	Determines the color of the CO2 parameter box and waveform.

<p>| O2 pbox | - O2 | Determines the appearance of the O2 parameter box. |
| | - O2/N2O (default) | |
| | - Off | |
| Agent pbox | - Agent | Determines the appearance of the Agent parameter box. |
| | - Agent/ xMAC (default) | Note: If two agents are detected, both are displayed automatically. |
| | - Agent/N2O | |
| | - Off | |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of ventilation monitoring</td>
<td>366</td>
</tr>
<tr>
<td>Infinity CentralStation – Vent Central option</td>
<td>366</td>
</tr>
<tr>
<td>External device alarms</td>
<td>366</td>
</tr>
<tr>
<td>Precautions</td>
<td>367</td>
</tr>
<tr>
<td>Device compatibility</td>
<td>367</td>
</tr>
<tr>
<td>Supported Servo I parameters</td>
<td>368</td>
</tr>
<tr>
<td>Supported Servo I waveforms</td>
<td>369</td>
</tr>
<tr>
<td>Viewing parameter data</td>
<td>369</td>
</tr>
<tr>
<td>Parameter boxes</td>
<td>370</td>
</tr>
<tr>
<td>Viewing loops</td>
<td>371</td>
</tr>
<tr>
<td>The Show all page</td>
<td>372</td>
</tr>
<tr>
<td>Accessing the parameter setup functions</td>
<td>372</td>
</tr>
<tr>
<td>Ventilator Paw setup functions</td>
<td>373</td>
</tr>
<tr>
<td>Ventilator parameter setup functions</td>
<td>374</td>
</tr>
<tr>
<td>CO2 parameter setup functions</td>
<td>375</td>
</tr>
</tbody>
</table>
Overview of ventilation monitoring

The device connectivity option enables the Cockpit to display parameter values, waveforms, and loops from a Servo-i ventilator.

Within 30 seconds of connecting a device, the data appear at the Cockpit. The ventilator monitoring functions are configurable in the parameter-specific setup page (see page 373).

Before performing any monitoring functions, refer to the section "For your safety and that of your patients" on page 11. For device-specific error messages, refer to the instructions for use of the connected ventilator.

NOTE
Ventilation waveforms are not supported on recordings.

External device alarms

Alarms from the ventilator are transmitted to the Infinity network and made available for alarm annunciation at the ICS. For more information, refer to the instructions for use Infinity CentralStation.

If the external device alarm feature is activated at the Cockpit (see page 407) and an external device is disconnected from the Cockpit, the following happens at the Cockpit and at the ICS when the patient is admitted at the ICS:

- An alarm tone of low priority sounds.
- The message **External device disconnected** is displayed.

NOTE
When connecting a ventilator that does not support CO2 monitoring, the Cockpit may still display a CO2 tab in the Ventilator dialog window.

Infinity CentralStation – Vent Central option

Certain parameters, settings, modes, and waveforms originating from Servo-i ventilators are broadcast to the network via the Cockpit. If the patient is admitted at an ICS (Infinity CentralStation) with software version VF8 and the Vent Central option is activated, you can review the above-mentioned data at the ICS. For more detailed information, refer to the VF8 instructions for use entitled 'Infinity CentralStation'.
Precautions

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions.

Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to "Safe connection with other electrical equipment" on page 13 of these instructions for use for information on how to connect devices safely.

WARNING
The following section lists all of the external devices and related software versions that Dräger has validated. Dräger cannot make any claim for the reliability of the data for subsequent or previous software versions or for any devices that have not been validated. In the interest of patient safety and device performance, do not connect devices to the monitor which have not been approved by Dräger. The hospital is responsible for contacting Dräger to determine the compatibility and warranty status of any connection made to another manufacturer’s medical devices.

Device compatibility

The Cockpit device connectivity interface allows data from the Servo-i ventilator with software version 7 to display parameters, settings and waveforms on the Cockpit. See the table below for supported parameters.
Supported Servo-i parameters

The following table lists which Servo-i ventilator parameters are displayed and trended on the Cockpit. Refer to page 367 for a list of supported ventilators and the compatible software versions.

<table>
<thead>
<tr>
<th>Parameter label</th>
<th>Description</th>
<th>Unit of measure</th>
<th>Displayed in Ventilation Show all page (see page 372) Yes/No?</th>
<th>Cockpit Trends page</th>
<th>Available for display in parameter box Yes/No?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdyn</td>
<td>Dynamic compliance</td>
<td>L/bar</td>
<td>Continuous</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>etCO2</td>
<td>End-tidal CO2</td>
<td>mmHg / kPa / %</td>
<td>Not supported for display</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
</tr>
<tr>
<td>FIO2</td>
<td>Inspired O2</td>
<td>%</td>
<td>Continuous</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>MVe</td>
<td>Minute volume, expired</td>
<td>L/min</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MVespon</td>
<td>Spontaneous expiratory minute volume</td>
<td>L/min</td>
<td>Continuous</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>PEEP</td>
<td>Peak end expiratory airway pressure</td>
<td>cmH2O</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIP</td>
<td>Peak inspiratory pressure</td>
<td>cmH2O</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Pmean</td>
<td>Mean airway pressure</td>
<td>cmH2O</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>Respiratory rate</td>
<td>/min</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCO2</td>
<td>Carbon dioxide production</td>
<td>mL/min</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTe</td>
<td>Tidal volume, expired</td>
<td>mL</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supported Servo-i waveforms

The following Medibus waveforms are displayed on the Cockpit.

<table>
<thead>
<tr>
<th>Waveform label</th>
<th>Description</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw</td>
<td>Airway pressure</td>
<td>mbar</td>
</tr>
<tr>
<td>Flow</td>
<td>Inspiratory and expiratory flow</td>
<td>L/min</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide concentration</td>
<td>mmHg, kPa, %</td>
</tr>
</tbody>
</table>

Viewing parameter data

The Cockpit displays parameter data originating from connected Servo-i ventilator in the following locations:

- Parameter boxes
- **Loops** pages (see page 371)
- **Trends** pages (see page 159)
- **Show all** pages (see 372)

The Cockpit displays the following waveforms, loops and parameters:

- Airway pressure waveform (Paw) and associated parameter box
- Expiratory flow waveform and associated flow/volume (vent) parameter box
- CO2 waveforms and associated parameter box
- Loops (flow-volume, pressure-volume)
Parameter boxes

The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The following diagram shows a ventilator parameter box.

A Primary parameter label
B Second parameter label
C Second parameter value
D Third parameter label
E Third parameter value
F Primary parameter value
Viewing loops

Loops offer important information about the response of the patient to mechanical ventilation. You can review loops on two pages: Pressure/volume and Flow/volume.

Pressure/volume loops illustrate changes in compliance, resistance, and work of breathing. A mechanical breath plots counter-clockwise, while a spontaneous breath plots clockwise. Inspiration starts at a point defined by baseline pressure and the volume level at the beginning of inspiration.

Flow/volume loops also report mechanical and spontaneous breaths. Inspiration begins at the origin and moves upward and clockwise. Expiration plots below the horizontal axis and progresses counter-clockwise to the original starting point.

NOTE
In neonatal mode, ventilator loops are not available on the Cockpit.

To view loops

1. Select the **Sensor parameters...** button on the main menu bar.
2. Select the **Ventilator** tab. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window:
 - >> symbol
 - ☰ display filter button

NOTE
Depending on which devices are connected to the Cockpit, two **Ventilator** tabs may be displayed. If you select the **Ventilator** tab and the selected page has the message **Medibus.X ventilator devices** displayed as a header, you have selected the wrong **Ventilator** tab.

3. Select the **PV Loop** tab to view pressure/volume loops or select the **FV Loop** tab to view flow/volume loops.
4. Select the **Loops** tab to view all loops in one dialog window.
5. Select the **Loop draw** button at the bottom of the page to choose how many loops are drawn on top of each other before the screen is cleared.
6. Select the **Save reference** button at the bottom of the page if you want to save a loop for future analysis and comparison.
External devices – Servo-i ventilator

The Show all page

The Show all page displays the values of the currently monitored ventilator parameters and units of measure in one screen.

NOTE
The settings TVi, I:E I part and I:E E part, also appear in the Show all page in addition to the parameters.

To access the ventilation show all page

1. Select the Trends/ Data... button on the main menu bar.
2. Select Trends > Ventilator > Show all

or

1. Select the Sensor parameters... button on the main menu bar.
2. Select the Ventilator tab.

NOTE
Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. If you select the Ventilator tab and the selected page has the message Medibus.X ventilator devices displayed as a header, you have selected the wrong Ventilator tab.

3. Select the Show all tab.

Accessing the parameter setup functions

1. Select Sensor parameters... from the main menu bar > Ventilator tab to access the Ventilator page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: >> symbol and the display filter button.

NOTE
Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. If you select the Ventilator tab and the selected page has the message Medibus.X ventilator devices displayed as a header, you have selected the wrong Ventilator tab.

2. Select either the Paw or the Vent tabs to access the respective pages.
Ventilator Paw setup functions

See page 372 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw scale</td>
<td>10, 15, 20, 25 (default), 30, 40, 50, 60, 70, 80, 100, 120 mbar</td>
<td>Determines the scale of the displayed Paw waveform.</td>
</tr>
<tr>
<td>Parameter 1</td>
<td>Pmean, PEEP, PIP (default)</td>
<td>Selects the primary parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>Pmean (default), PEEP, PIP</td>
<td>Selects the second parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>Pmean, PEEP (default), PIP</td>
<td>Selects the third parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white.</td>
<td>Determines the color of all ventilation parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>
Ventilator parameter setup functions

See page 372 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow scale</td>
<td>5, 10, 15, 20 (default in neonatal mode), 35, 50, 100 (default in adult and pediatric mode), 150, 200 L/min</td>
<td>Determines the scale of the displayed Flow waveform.</td>
</tr>
<tr>
<td>Vol scale</td>
<td>5, 10, 25, 50 (default in neonatal mode), 75, 100, 250, 500, 1000 (default in pediatric and adult mode), 1500 mL</td>
<td>Determines the scale of the displayed Volume waveform.</td>
</tr>
<tr>
<td>Parameter 1</td>
<td>MVe (default), RR, VTe</td>
<td>Selects the primary parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>MVe, RR (default), VTe</td>
<td>Selects the second parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>MVe, RR, VTe (default)</td>
<td>Selects the third parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white.</td>
<td>Determines the color of all ventilation parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>
CO2 parameter setup functions

See page 372 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 Scale</td>
<td>– 0 to 40 (default), 0 to 60, 0 to 80, 0 to 100 mmHg</td>
<td>Determines the scale of the displayed CO2 waveform.</td>
</tr>
<tr>
<td></td>
<td>– 0.0 to 5.0 (default), 0.0 to 8.0, 0.0 to 12.0, 0.0 to 16.0 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 0 to 5 (default), 0 to 8, 0 to 12, 0 to 16 %</td>
<td></td>
</tr>
<tr>
<td>Atm. pressure</td>
<td>570 to 800 mmHg</td>
<td>Determines the atmospheric pressure setting.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow (default), light blue, purple, orange, white.</td>
<td>Determines the color of the CO2 parameter box and waveform.</td>
</tr>
</tbody>
</table>
External devices – Evita 2D, Evita 4, Evita XL (Medibus)

Overview of ventilation monitoring 378
Infinity CentralStation – Vent Central option ... 378
External device alarms 378

Precautions 379

Device compatibility 379

Supported Medibus ventilator data 380
Supported Medibus parameters on the Cockpit 380
Supported Medibus waveforms 382

Viewing Medibus parameter data 382

Parameter boxes 383

Viewing loops 383

The Show all page 384

Accessing the parameter setup functions . 385

Ventilator Paw setup functions 385

Ventilator parameter setup functions 386

CO2 parameter setup functions 387
Overview of ventilation monitoring

The device connectivity option enables the Cockpit to display parameter values, waveforms, and loops from the Medibus-compatible ventilators Evita 2D, Evita 4, and Evita XL.

Within 30 seconds of connecting a device, the data appear at the Cockpit. The ventilator monitoring functions are configurable in the parameter-specific setup page (see page 385).

NOTE
Ventilation waveforms are not supported on recordings.

Before performing any monitoring functions, refer to the section “For your safety and that of your patients” on page 11. For device-specific error messages, refer to the instructions for use of the connected ventilator.

NOTE
When connecting a ventilator that does not support CO2 monitoring, the Cockpit may still display a CO2 tab in the Ventilator dialog window.

External device alarms

Alarms from the ventilator are transmitted to the Infinity network and made available for alarm annunciation at the ICS. For more information, refer to the instructions for use Infinity CentralStation.

If the external device alarm feature is activated at the Cockpit (see page 407) and an external device is disconnected from the Cockpit, the following happens at the Cockpit and at the ICS if the patient is admitted at the ICS:

- An alarm tone of low priority sounds.
- The message External device disconnected is displayed.

Infinity CentralStation – Vent Central option

Certain parameters, settings, modes, and waveforms originating from Evita ventilators are broadcast to the network via the Cockpit. If the patient is admitted at an ICS (Infinity CentralStation) with software version VF8 and the Vent Central option is activated, the above-mentioned data is displayed at the ICS. For more detailed information, refer to the VF8 instructions for use entitled ‘Infinity CentralStation’.
Precautions

WARNING
Always refer to the primary data source before making diagnostic or therapeutic decisions.

Connecting peripheral devices is supported via the device connectivity option. Only connect peripheral medical devices to a patient monitor if those devices comply with the electrical safety requirements found in IEC 60601-1. Refer to "Safe connection with other electrical equipment" on page 13 of these instructions for use for information on how to connect devices safely.

WARNING
The following section lists all of the external devices and related software versions that Dräger has validated. Dräger cannot make any claim for the reliability of the data for subsequent or previous software versions or for any devices that have not been validated. In the interest of patient safety and device performance, do not connect devices to the monitor which have not been approved by Dräger. The hospital is responsible for contacting Dräger to determine the compatibility and warranty status of any connection made to another manufacturer's medical devices.

Device compatibility

The device connectivity option allows data from Evita 2D, Evita 4, and Evita XL ventilators to display parameters, settings and waveforms on the Cockpit. The following table lists which software versions are supported with Medibus.

<table>
<thead>
<tr>
<th>Supported device</th>
<th>Supported software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dräger Evita 2D</td>
<td>1.00 and higher</td>
</tr>
<tr>
<td>Dräger Evita 4</td>
<td>1.00 and higher</td>
</tr>
<tr>
<td>Dräger Evita XL</td>
<td>5.00 and higher</td>
</tr>
</tbody>
</table>
External devices – Evita 2D, Evita 4, Evita XL (Medibus)

Supported Medibus ventilator data

The Evita ventilators (Evita 2D, Evita 4, and Evita XL) send parameters, settings, modes and alarm messages to the Cockpit.

Certain ventilator parameters, settings, and ventilation modes are broadcast to the Infinity network. In addition, a limited number of alarms are made available to the Infinity network.

Refer to the RS-232 export handbook for information on which parameters are available for export protocol and which settings and modes are supported. The RS-232 export handbook is available in English only.

Supported Medibus parameters on the Cockpit

The following table lists which parameters are displayed and trended on the Cockpit. Refer to page 379 for a list of supported ventilators and the compatible software versions.

<table>
<thead>
<tr>
<th>Parameter label</th>
<th>Description</th>
<th>Unit of measure</th>
<th>Displayed in Ventilation Show all page (see page 384)</th>
<th>Cockpit Trends page</th>
<th>Available for display in parameter box Yes/No?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdyn</td>
<td>Dynamic compliance</td>
<td>L/bar</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>etCO2</td>
<td>End-tidal carbon dioxide concentration</td>
<td>mmHg</td>
<td>Yes</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FiO2</td>
<td>Inspiratory oxygen fraction</td>
<td>%</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>MVe</td>
<td>Minute volume, expired</td>
<td>L/min</td>
<td>Yes</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVspon</td>
<td>Minute volume, expired, spontaneous</td>
<td>L/min</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>P0.1</td>
<td>Occlusion pressure</td>
<td>mbar or cmH2O</td>
<td>Not supported for display.</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>PEEP</td>
<td>Peak end expiratory airway pressure</td>
<td>mbar or cmH2O</td>
<td>Yes</td>
<td>Continuous</td>
<td>Yes</td>
</tr>
<tr>
<td>Pmean</td>
<td>Mean airway pressure</td>
<td>mbar or cmH2O</td>
<td>Yes</td>
<td>Continuous</td>
<td>Yes</td>
</tr>
<tr>
<td>Pmin</td>
<td>Minimum airway pressure</td>
<td>mbar or cmH2O</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>Parameter label</td>
<td>Description</td>
<td>Unit of measure</td>
<td>Displayed in Ventilation Show all page (see page 384) Yes/No?</td>
<td>Cockpit Trends page</td>
<td>Available for display in parameter box Yes/No?</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pplat</td>
<td>Plateau pressure</td>
<td>mbar or cmH2O</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>PIP</td>
<td>Peak inspiratory pressure</td>
<td>mbar or cmH2O</td>
<td>Yes</td>
<td>Continuous and mini trend</td>
<td>Yes</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td>mmbar/L/s</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>RRspson</td>
<td>Spontaneous respiratory rate</td>
<td>/min</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>RR</td>
<td>Respiratory rate</td>
<td>/min</td>
<td>Yes</td>
<td>Continuous</td>
<td>Yes</td>
</tr>
<tr>
<td>I:E I part</td>
<td>Inspiratory component</td>
<td>No unit</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>I:E E part</td>
<td>Expiratory component</td>
<td>No unit</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>I:E</td>
<td>Ratio inspiratory to expiratory component</td>
<td>No unit</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>V'CO2</td>
<td>Carbon dioxide production</td>
<td>mL/min</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>Vds</td>
<td>Serial dead space volume</td>
<td>mL</td>
<td>Yes</td>
<td>Continuous</td>
<td>No</td>
</tr>
<tr>
<td>Vds/VTe</td>
<td>Ratio of serial dead space volume to expiratory tidal volume</td>
<td>%</td>
<td>Yes</td>
<td>Not trended</td>
<td>No</td>
</tr>
<tr>
<td>VTe</td>
<td>Expiratory tidal volume</td>
<td>mL</td>
<td>Yes</td>
<td>Continuous</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Supported Medibus waveforms

The following Medibus waveforms are displayed on the Cockpit.

<table>
<thead>
<tr>
<th>Waveform label</th>
<th>Description</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw</td>
<td>Airway pressure</td>
<td>mbar</td>
</tr>
<tr>
<td>Flow</td>
<td>Inspiratory and expiratory flow</td>
<td>L/min</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon dioxide concentration</td>
<td>mmHg, kPa, %</td>
</tr>
</tbody>
</table>

Viewing Medibus parameter data

The Cockpit displays parameter data originating from connected Evita 2D, Evita 4, and Evita XL ventilators in the following locations:

- Parameter boxes
- **Loops** pages (see page 383)
- **Trends** pages (see page 159)
- **Show all** pages (see 384)

The Cockpit displays the following waveforms, loops, and parameters:

- Airway pressure waveform (Paw) and associated parameter box
- Expiratory flow waveform and associated flow/volume (vent) parameter box
- CO2 waveforms and associated parameter box
- Loops (flow-volume, pressure-volume)
Parameter boxes

NOTE
The following diagram shows a typical parameter box layout. This layout may change when additional parameters are put on display. For more information, see "Parameter boxes" on page 53.

Parameter boxes report parameter values and indicate the alarm status of parameters. Parameter boxes can also report technical conditions such as disconnected sensors, and so on. For detailed information regarding the content of parameter boxes for each parameter, see the chapter "Problem solving" on page 455.

The following diagram shows a ventilator parameter box.

Viewing loops

Loops offer important information about the response of the patient to mechanical ventilation. You can review loops on two pages: Pressure/volume and Flow/volume.

Pressure/volume loops illustrate changes in compliance, resistance, and work of breathing. A mechanical breath plots counter-clockwise, while a spontaneous breath plots clockwise. Inspiration starts at a point defined by baseline pressure and the volume level at the beginning of inspiration.

Flow/volume loops also report mechanical and spontaneous breaths. Inspiration begins at the origin and moves upward and clockwise. Expiration plots below the horizontal axis and progresses counter-clockwise to the original starting point.

NOTE
In neonatal mode, ventilator loops are not available on the Cockpit.
To view loops

1. Select the Sensor parameters... button on the main menu bar.
2. Select the Ventilator tab. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window:
 - **symbol**
 - **display filter button**
3. Select the PV Loop tab to view pressure/volume loops or select the FV Loop tab to view flow/volume loops.
4. Select the Loops tab to view all loops in one dialog window.
5. Select the Loop draw button at the bottom of the page to choose how many loops are drawn on top of each other before the screen is cleared.
6. Select the Save reference button at the bottom of the page if you want to save a loop for future analysis and comparison.

NOTE
Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. If you select the Ventilator tab and the selected page has the message Medibus.X ventilator devices displayed as a header, you have selected the wrong Ventilator tab.

The **Show all** page

The **Show all** page displays the values of the currently monitored ventilator parameters and units of measure in one screen.

To access the ventilation show all page

1. Select the Trends/ Data... button on the main menu bar.
2. Select Trends > Ventilator > Show all or
1. Select the Sensor parameters... button on the main menu bar.

NOTE
Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. If you select the Ventilator tab and the selected page has the message Medibus.X ventilator devices displayed as a header, you have selected the wrong Ventilator tab.

3. Select the Show all tab.
Accessing the parameter setup functions

1. Select Sensor parameters... from the main menu bar > Ventilator tab to access the Ventilator page. If you cannot see the tab, select the following two symbols located in the upper right corner of the dialog window: ➔ symbol and the display filter button.

2. Select either the Paw or the Vent tabs to access the respective pages.

NOTE
Depending on which devices are connected to the Cockpit, two Ventilator tabs may be displayed. If you select the Ventilator tab and the selected page has the message Medibus.X ventilator devices displayed as a header, you have selected the wrong Ventilator tab.

Ventilator Paw setup functions

See page 385 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paw scale</td>
<td>10, 15, 20, 25 (default), 30, 40, 50, 60, 70, 80, 100, 120 mbar</td>
<td>Determines the scale of the displayed Paw waveform.</td>
</tr>
<tr>
<td>Parameter 1</td>
<td>P_{mean}, PEEP, PIP (default)</td>
<td>Selects the primary parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>P_{mean} (default), PEEP, PIP</td>
<td>Selects the second parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>P_{mean}, PEEP (default), PIP</td>
<td>Selects the third parameter in the Paw parameter box.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white.</td>
<td>Determines the color of all ventilation parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>
Ventilator parameter setup functions

See page 385 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow scale</td>
<td>5, 10, 15, 20 (default in neonatal mode), 35, 50, 100 (default in adult and pediatric mode), 150, 200 L/min</td>
<td>Determines the scale of the displayed Flow waveform.</td>
</tr>
<tr>
<td>Vol scale</td>
<td>5, 10, 25, 50 (default in neonatal mode), 75, 100, 250, 500, 1000 (default in pediatric and adult mode), 1500 mL</td>
<td>Determines the scale of the displayed Volume waveform.</td>
</tr>
<tr>
<td>Parameter 1</td>
<td>MVe (default), RR, VTe</td>
<td>Selects the primary parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Parameter 2</td>
<td>MVe, RR (default), VTe</td>
<td>Selects the second parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Parameter 3</td>
<td>MVe, RR, VTe (default)</td>
<td>Selects the third parameter in the Vent parameter box.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow, light blue (default), purple, orange, white.</td>
<td>Determines the color of all ventilation parameter boxes, waveforms, and loops.</td>
</tr>
</tbody>
</table>
CO2 parameter setup functions

See page 385 for information on how to access this page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Scale</td>
<td>– 0 to 40 (default), 0 to 60, 0 to 80, 0 to 100 mmHg
– 0.0 to 5.0 (default), 0.0 to 8.0, 0.0 to 12.0, 0.0 to 16.0 kPa
– 0 to 5 (default), 0 to 8, 0 to 12, 0 to 16 %</td>
<td>Determines the scale of the displayed CO₂ waveform.</td>
</tr>
<tr>
<td>Atm. pressure</td>
<td>570 to 800 mmHg</td>
<td>Determines the atmospheric pressure setting.</td>
</tr>
<tr>
<td>Color</td>
<td>Red, green, blue, yellow (default), light blue, purple, orange, white.</td>
<td>Determines the color of the CO₂ parameter box and waveform.</td>
</tr>
</tbody>
</table>
System configuration

Overview ... 390
Screen setup .. 390
Screen setup – general settings 391
Screen setup – auto view functions 392
Configuring the auto view settings 393
Configuring parameters for display 394
The parameter selection window 394
Configuring the parameter priority and display ... 395
Screen setup – configuring views 397
Screen setup – configuring main menu bar buttons 398
Screen setup – configuring the multi-tab split screen 401
Screen setup – the View editor 402
View editor functions 402
Configuring the alarm setup 404
Alarms setup – general settings 404
Alarm setup – configuring the alarm volume and tones 407
Alarm setup – Code functions 410
Alarm setup – configuring M540 settings ... 412
Configuring the recording and report settings .. 413
Reports setup – Reports page 413
Recorder setup 414
Rest ECG setup 415
Reports setup – Reports setup page 416
Biomed setup 416
Biomed setup – country-specific settings ... 417
Biomed setup – units of measure 418
Biomed setup – patient monitor setup 419
Biomed setup – name service settings 421
Biomed setup – network setup 422
Biomed setup – printer setup 423
Biomed setup – recorder setup 423
Biomed setup – service setup 424
Biomed IT setup 425
Activating/deactivating IT tab feature 425
Configuring IT tabs – web browser setup ... 425
Adding a web browser page 426
Deleting a web browser page 427
Configuring Citrix applications 427
Configuring IT tabs 428
Profile setup 430
Selecting a profile 430
Saving profiles 431
Modifying an existing profile 431
Saving a new profile 432
Configuring profiles 433
Configuring the patient-specific profiles ... 434
Transferring profiles 435
Transferring patient profiles over the network .. 435
Importing and exporting profiles using a USB memory stick 436
System configuration

Overview

This chapter describes the System setup dialog window which consists of several setup pages for configuring the Cockpit. Some of these setup pages are password protected and are only accessible to authorized personnel.

The System setup dialog window consists of the following setup pages:

- Screen setup (see page 390)
- Alarms (see page 404)
- Recordings/Reports (see page 413)
- Biomed (see page 416)
- Profiles (see page 430)

Most setup pages consist of selections for configuring individual features. In the following sections such setup pages are presented as tables which list each menu selection, the available settings, and a description. Some setup pages are more complex and are therefore described in more detail. Where necessary, diagrams clarify additional setup procedures.

Screen setup

Several Screen setup pages are available for configuring the layout and the content of the screen.

To access the screen setup functions

1. Select the System setup... button on the main menu bar.
2. Select the Screen setup tab (if not already selected).
3. Select one of the following tabs to access the corresponding setup page:

- General settings
- Auto view (if the auto view setup toolbar is visible along the bottom of the screen, you can also select the Setup button in the lower right corner of the screen to access the Auto view page)
- Views (password required)
- Config. buttons (password required)
- Multi-tab split screen
- View editor (password required)
Screen setup – general settings

The following table lists the available settings of the General settings page. Your selection takes effect immediately. To access this page, see page 390.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring sweep speed [mm/s]</td>
<td>6.25, 12.5, 25 (default), 50</td>
<td>Sets the sweep speed of the waveforms.</td>
</tr>
<tr>
<td>Respiratory sweep speed [mm/s]</td>
<td>6.25 (default), 12.5, 25, 50</td>
<td>Sets the sweep speed of the respiratory waveform.</td>
</tr>
<tr>
<td>Parameter units display</td>
<td>On, Off (default)</td>
<td>Activates/deactivates the display of parameter units in the parameter boxes.</td>
</tr>
<tr>
<td>Attention tone volume</td>
<td>– Off</td>
<td>Determines the volume of the attention tone or deactivates it.</td>
</tr>
<tr>
<td></td>
<td>– 5, 10 to 100 in increments of 10 % (default 40 %)</td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td>10 to 100 % (default) in increments of 10 %</td>
<td>Adjusts the brightness of the Cockpit screen. This setting does not affect the M540.</td>
</tr>
<tr>
<td>Night time</td>
<td>00:00 to 24:00</td>
<td>Sets the start and end time of night time mode. During night time mode, the entire background of the screen appears almost black. All buttons turn dark gray.</td>
</tr>
</tbody>
</table>
Screen setup – auto view functions

The following diagram shows the Auto view page. This page also functions dynamically with the auto view setup toolbar (see page 395). To access this page, see page 390.

A: Auto display mode selection button
B: Manual display mode selection button
C: Display filter button
D: Auto view tab
E: Waveforms button
F: Layout button
G: Pressure overlap on/off button
H: Parameter boxes button
I: Layout button
J: Split screen button
K: Mini trends selection button
L: NIBP trend button
M: Toolbar button
N: Parameter selection window
Configuring the auto view settings

You can perform various functions in the Auto view page. The following settings describe the general settings of the Auto view page. For detailed information on setting up the display attributes of a parameter, see “Configuring parameters for display” on page 394.

To configure the available settings

In the following steps, the letters in parentheses correspond to the diagram for the Auto view page (see page 392).

1. Access the Auto view page (see page 390).
2. Select the display mode by selecting one of the following two buttons next to Display mode:
 - Auto (A) to select the auto display mode (see page 65).
 - Manual (B) to select the manual display mode (see page 59).
3. Select the Waveforms button (E) to determine the number of waveforms that can be selected in the parameter selection window (N). The number of waveforms available for selection depends on the purchased software and hardware options:

<table>
<thead>
<tr>
<th>Device</th>
<th>With option</th>
<th>Without option</th>
</tr>
</thead>
<tbody>
<tr>
<td>C500</td>
<td>12 or 16 waveforms</td>
<td>10 waveforms</td>
</tr>
<tr>
<td>C700</td>
<td>16 waveforms</td>
<td>12 waveforms</td>
</tr>
</tbody>
</table>

4. Select the Pressure overlap on or off (default) button (G) to activate or deactivate pressure overlap mode. This feature works only if the pressure waveforms are displayed in adjacent channels.
5. Select the Parameter boxes button (H) and use the rotary knob to select the desired number of parameter boxes for display. The available selections are: Off, 1, 2, 3 (default), 4, 5, 6.
6. Select the Layout button (I). Then select the Top or Bottom (default) button to determine if the parameter boxes appear along the bottom or the top of the screen.
 - Select the Split screen button (J). This button appears greyed out if the web enabled layouts option is locked. The available selections are: None (default), Anesthesia show all, BIS show all, BIS/NMT show all, CCO show all, ECG/ST, ECG/Vent, ECG show all, Loops, SpO2 show all, ST parameters, Multi-tab split screen, Ventilator show all, Trend table.

 If you select None, the monitoring area contains only real-time parameters. Any other selection divides the monitoring area into two windows. The right window continues to display the real-time parameters. For more detail see "M540 and Cockpit communication" on page 38.
7. Select the Mini trends button (K) to activate or deactivate the mini-trend display or select a trend display time (see page 61). The available selections are: Off, 10 min, 15 min, 20 min, 30 min (default), 45 min, 1 h, 90 min, 2 h, 6 h, 12 h, 24 h.
8. Select the NIBP trend button (L) to choose between the graphic or numeric representation of the NIBP mini-trend display.
9. Toggle the Toolbar button (M) to On (default) or Off to activate or deactivate the auto view setup toolbar (see page 393).
Configuring parameters for display

Basically, the parameter selection window (D) of the Auto view page controls where a parameter appears on the screen. The window also controls how a parameter is displayed (as a waveform and/or as a parameter box), or if it is excluded from display. To access this page, see page 390.

The parameter selection window

The parameter selection window (D) in the Auto view page determines where a parameter appears on the screen and how it is displayed.

The selected display mode determines how the parameter selection window behaves:

– If you select the Auto button (B) next to Display mode, the parameter selection window functions dynamically with the auto view setup toolbar (see page 395). You can also determine the content of the parameter list by using the display filter button . When it appears on a dark green background, all parameters are displayed in the parameter selection window, even if they are not connected. Parameters that are not connected appear gray. However, as soon as you connect a parameter, the corresponding label appears black, and occupies the assigned location on the screen.

When the display filter button appears on a light green background, the parameter selection window contains only connected parameters.

– If you select the Manual button (C) next to Display mode, all parameters are listed. In this case, the display filter button is deactivated. If a parameter is not connected, the corresponding label appears gray. However, unlike in auto mode, the parameter label and/or waveform occupies a space on the screen even though it is not connected yet.
System configuration

Configuring the parameter priority and display

In the parameter selection window, one of three display symbols appears next to each parameter label. The symbols identify how the parameter appears on the screen:

- the parameter appears as a waveform and as a parameter box
- the parameter appears as a parameter box
- the parameter is not displayed

Parameters are arranged in descending order in the window and occupy the same position on the screen. For example, the top parameter in the parameter selection window occupies the top location on the screen.

In auto display mode, you can configure a parameter in two ways:
- From the Auto view page
- From the auto view setup toolbar which appears at the bottom of the screen if activated

In manual display mode, you can configure a parameter only from the Auto view page (see page 392).

To configure the parameter priority and display from the Auto view page

In the following steps, the letters in parentheses correspond to the diagram for the Auto view page (see page 392).

1. Access the Auto view page (see page 390).
2. Select the number of waveforms for display with the Waveforms button (E).
3. Select the number of parameter boxes for display with the Parameter boxes button (H).

4. Select the parameter and use the rotary knob to move it up or down the parameter selection window (N) to the desired position. As you move the parameter up or down the list, the display symbol next to the parameter can change. For example, a parameter that previously appeared as a parameter box and a waveform \(\text{H} \), will only appear as a parameter box \(\text{X} \) as you are moving it down the list.

5. Press the rotary knob to confirm the selection.

To configure the parameter priority and display from the Auto view setup toolbar

When activated (see page 392), the auto view setup toolbar appears along the bottom of the screen whenever you activate a view containing an auto view component. The auto view setup toolbar functions dynamically with the parameter selection window of the Auto view page (see page 394). Whatever changes you make in one place is reflected in the other.

Each connected parameter is represented as a small field on the auto view setup toolbar. The following illustration is an example of how the auto view setup toolbar identifies the display mode of parameters on the main screen. The symbols above the parameter label identify the three different display modes. The same symbols appear in the parameter selection window of the Auto view page.
A parameter with the $\downarrow\neg$ symbol on the auto view setup toolbar appears as a waveform and a parameter box on the main screen. Parameters in this display mode always appear on the left side of the auto view setup toolbar.

B A parameter with the \neg symbol on the auto view setup toolbar appears only as a parameter box on the main screen. Parameters in this display mode always appear in the center of the auto view setup toolbar.

C A parameter with the $\neg\neg$ symbol on the auto view setup toolbar is excluded from display on the main screen. Parameters in this display mode always appear on the right side of the auto view setup toolbar.

In the Auto view page (see page 392), you can select the maximum amount of 'waveforms' and 'parameter box' fields and determine the parameter priority. The number of parameters you can select depends on the locked option that is activated.

For example, if you select five waveforms and three parameter box fields in the Auto view page, the auto view setup toolbar consists of five waveform fields and three parameter fields. If more parameters are available than there are fields assigned to the auto view setup toolbar, the additional parameters are relegated to the 'not displayed' status.

NOTE
If the auto view setup toolbar is displayed, you can access the Auto view page by selecting the Setup button at the right edge of the Auto view toolbar.

You can either display or hide the auto view setup toolbar (see page 393). You can also change the display status of a parameter display mode by switching its position on the auto view setup toolbar.

To change the display status of a parameter

1. Select the field on the auto view setup toolbar of the parameter whose display mode you wish to change. A yellow frame highlights the selected field.

2. Use the rotary knob to move the parameter to the desired place on the auto view setup toolbar. Whatever position you move it to determines the display status of the parameter. Pay attention to the symbol that changes as you turn the rotary knob to select a new position.

 For example, if a parameter is assigned to the 'no display' status $\neg\neg$, turn the rotary knob to the left until the field appears in the 'waveform' portion of the auto view setup toolbar. The symbol changes to the following image: $\downarrow\neg\neg$.

3. Press the rotary knob to confirm your selection. The new parameter and the previous parameter switch positions on the auto view setup toolbar and the screen changes accordingly.

Any changes you make on the auto view setup toolbar are immediately reflected on the Auto view page (see page 392) and vice versa.
Screen setup – configuring views

The Views page displays all available views which control how information is presented on the screen. The Views page consists of custom views and Dräger views. You can select any view and save changes to custom views. Dräger views can be selected, but they cannot be changed.

To save changes to a custom view

1. Select the System setup... button on the main menu bar.
2. Select the Screen setup tab (if not already selected).
4. Enter the clinical password and select the Enter button.
5. Select the view whose name is followed with an asterisk and appears in italic font (for example, Basic OR *). This display convention identifies a view that has been modified and whose changes have not yet been saved.
6. Select the Save view button. This button does not execute any function if you select it and no custom views are available to be saved.
7. Press the rotary knob.

NOTE
You can also save changes to a custom View from the View editor page.
Screen setup – configuring main menu bar buttons

The Config. buttons page allows you to customize the content of the main menu bar (see page 56) by adding and removing buttons. However, the menu bar contains several buttons with essential functionality that are permanently placed and cannot be removed.

The following diagram shows the default Config. buttons page for a C700. On the C500 the fixed keys (Print screen and Zero all) do not appear on the main menu bar. They appear on the quick access toolbar instead. The depicted menu bar is an exact replica of the actual menu bar. As you make changes to the menu bar on the Config. buttons page, the actual menu bar on the main screen changes accordingly.

A Alarms... button
B Mark event button
C Code button
D Views... button
E Print screen button
F Freeze waveforms button
G Trends/ Data... button
H Procedures... button
I Sensor parameters... button
J NIBP start/stop button
K Zero all button
L System setup... button
M Start/Standby... button
N Home button
O Restore config. buttons button
P Selection window with available buttons
Q Arrow buttons for moving the cursor up and down the selection list
R Slide bar for moving a button up or down the menu bar.
To configure the function keys

In the following steps, the letters in parentheses correspond to the diagram for the Config. buttons page (see page 398).

1. Select the System setup... button on the main menu bar.
2. Select the Screen setup tab (if not already selected).
3. Select the Config. buttons tab. A password popup appears.
4. Enter the clinical password and select the Enter button.
5. Select the button on the menu bar list to be replaced with another one.

NOTE

Any button appearing on a light grey background identifies one that holds a permanent position on the menu bar. These buttons cannot be exchanged and are therefore not selectable.

The button to be removed is highlighted in yellow. A popup window (P) with a slide ruler appears. The popup contains the following list of available selections. Up to 14 buttons can be assigned to the main menu bar:

<table>
<thead>
<tr>
<th>Button Description</th>
<th>Button Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Reassigns the button name to ‘None’ in the Config. buttons page.</td>
</tr>
<tr>
<td></td>
<td>Removes the original button from the main menu bar and reorders the buttons on the main menu bar.</td>
</tr>
<tr>
<td>All alarms paused</td>
<td>Pauses all alarms at the Cockpit for two minutes.</td>
</tr>
<tr>
<td>Auto set all</td>
<td>Adjusts the alarm limits of all parameters automatically.</td>
</tr>
<tr>
<td>Code</td>
<td>Executes pre-configured functions during an emergency.</td>
</tr>
<tr>
<td>Night time</td>
<td>Controls the brightness of the Cockpit screen.</td>
</tr>
<tr>
<td>Default view</td>
<td>Resets the Cockpit to the factory-default view.</td>
</tr>
<tr>
<td>Discharge</td>
<td>Discharges a patient from the Cockpit.</td>
</tr>
<tr>
<td>Freeze waveforms</td>
<td>Stops the waveform from scrolling for approximately 60 seconds.</td>
</tr>
<tr>
<td>Home</td>
<td>Returns to the main screen and closes any dialog window.</td>
</tr>
<tr>
<td>Mark event</td>
<td>Stores 20 seconds of waveform and parameter data in the alarm history.</td>
</tr>
<tr>
<td>NIBP start/stop</td>
<td>Starts or stops an non-invasive blood pressure measurement.</td>
</tr>
<tr>
<td>NIBP continuous</td>
<td>Starts or stops a continuous non-invasive blood pressure measurement.</td>
</tr>
<tr>
<td>Pacer detection</td>
<td>Allows you to activate or deactivate pacer detection.</td>
</tr>
<tr>
<td>Print case summary</td>
<td>Prints a combination of reports configured in the Reports page.</td>
</tr>
<tr>
<td>Print screen</td>
<td>Prints the contents of the current screen on a connected laser printer.</td>
</tr>
<tr>
<td>Privacy</td>
<td>Activates privacy mode (patient monitoring continues but the patient data are removed from the Cockpit and the M540 and appear only at the ICS).</td>
</tr>
<tr>
<td>Relearn ARR</td>
<td>Prompts the M540 to learn the dominant QRS pattern of a patient to identify the rhythms as either normal or irregular.</td>
</tr>
<tr>
<td>Relearn ST</td>
<td>Prompts the M540 to learn the dominant ST deviations of a patient in order to identify ST rhythms as either normal or irregular.</td>
</tr>
</tbody>
</table>
System configuration

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote view</td>
<td>Provides access to patient data from other Infinity monitors within the same monitoring unit.</td>
</tr>
<tr>
<td>Rest ECG report</td>
<td>Prints a diagnostic report generated from a 12-lead ECG.</td>
</tr>
<tr>
<td>Show all ECG</td>
<td>Displays all ECG waveforms.</td>
</tr>
<tr>
<td>Standby</td>
<td>Places the Cockpit in standby mode.</td>
</tr>
<tr>
<td>Start C.O.</td>
<td>Starts a cardiac output measurement.</td>
</tr>
<tr>
<td>Start wedge</td>
<td>Starts a pulmonary wedge measurement.</td>
</tr>
<tr>
<td>Split screen</td>
<td>Turns the split screen view on and off based on the configuration. For information about configuring the split screen view, see "Configuring the auto view settings" on page 393.</td>
</tr>
<tr>
<td>System setup...</td>
<td>Activates the password-protected system functions for configuring the Cockpit.</td>
</tr>
<tr>
<td>Trend graph report</td>
<td>Prints the contents of the trend graphs window according to the selected Trend duration [hr] setting.</td>
</tr>
<tr>
<td>Trend table report</td>
<td>Prints the contents of the trend table window according to the selected Table interval [min] setting.</td>
</tr>
<tr>
<td>Venous stasis</td>
<td>Activates venous stasis mode.</td>
</tr>
<tr>
<td>Volumes...</td>
<td>Accesses the Settings page for configuring the volume of the various tones.</td>
</tr>
<tr>
<td>Zero all</td>
<td>zeroes all invasive blood pressures.</td>
</tr>
</tbody>
</table>

6 Select the desired button or click the rotary knob to move the new button to the menu bar. The previous button is moved to the popup window. The main menu bar changes immediately to reflect the new selection.

7 Repeat steps 5 – 7 for additional configuration changes to the menu bar.

To restore the default setup of the menu bar
You can restore the default setup of the menu bar (see page 398) at any time. In the following steps, the letters in parentheses correspond to the diagram for the Config. buttons page (see page 398).

1 Select the System setup... button on the main menu bar.

2 Select the Screen setup tab (if not already selected).

3 Select the Config. buttons tab. A password popup appears.

4 Enter the clinical password and select the Enter button.

5 Select the Restore config. buttons button.
Screen setup – configuring the multi-tab split screen

The Multi-tab split screen is a split screen mode that consists of up to three separate tabs (see diagram on page 60). The content of each tab can be configured separately.

To be able to turn the Split screen view on and off from the main menu bar, be sure the Split screen button is assigned to the menu bar. See ‘To configure the function keys’ on page 399.

To configure the split screen

1. Select the System setup... button on the main menu bar.
2. Select the Screen setup tab (if not already selected).
3. Select the Multi-tab split screen tab.
4. Select the Tab 1, Tab 2, or Tab 3 to select the desired content from the following list of available choices:
 - Anesthesia show all (default for Tab 2)
 - BIS show all (default for Tab 3)
 - BIS/NMT show all
 - CCO show all
 - ECG/ST
 - ECG/Vent
 - ECG show all (default for Tab 1)
 - Loops
 - SpO2 show all
 - ST parameters
 - Ventilator show all
 - Trend table
 - Ventilator show all
Screen setup – the View editor

In addition to the eight Dräger views, each Cockpit can have eight custom views. The View editor is an option that allows you to create, modify, and save custom views.

NOTE

Although the Cockpit can display many parameters and waveforms, use discretion when building custom views to make sure clinically relevant information is not obscured or unreadable.

The following diagram shows the View editor page.

To access the view editor

1. Select the System setup... button on the main menu bar.
2. Select the Screen setup tab > View editor tab (C).
3. Enter the password and select the Enter button.

View editor functions

In the following procedures, the letters in parentheses correspond to the View editor diagram.

The View editor allows you to perform the following functions:

- Modify existing views
- Save changes to a view
- Change the name of the selected view
- Assign a view to profiles
To modify a custom view

NOTE
Although the Cockpit can display many parameters and waveforms, use discretion when building custom Views to make sure clinically relevant information is not obscured or unreadable.

1. Access the View editor page (see page 402).
2. Select the arrow button next to the View field (A) and select the view you wish to modify.

NOTE
You can only change custom Views. Dräger views cannot be changed.

A view label that appears in italic font and is followed by an asterisk identifies a view that has been modified but whose changes have not been saved yet.

3. Select the arrow button next to the Template field (B) to select a layout template (D) which consists of various panels that illustrate what the basic layout of the screen will look like.

4. Touch a panel of the selected layout template to select a content. The following Content popup appears.

5. Select the top arrow button (G) in the Content popup to assign one of the following contents to the selected panel:
 - Parameters
 - Waveforms
 - Applications

6. Select the bottom arrow button (H) in the Content popup to select additional settings. For example, if you chose Waveforms in step 4, you can select the ECG lead for display.

7. Repeat steps 4 and 5 for all panels in the selected layout template.

8. Select the Save view symbol (G) next to Save view field (see diagram on page 402) to save the changes under the existing name.
 or
 Select the symbol next to the View field (A) to access a keyboard for renaming the current view.

To assign a view to profiles

You can assign a view to a profile after you modify a view or at any time after that.

1. Access the View editor page (see page 402).
2. Select the arrow button next to the View field (A) to choose the view that you wish to assign to profiles (if not already selected).

3. Select the Profiles... button (F) to display the Add to profile popup.

4. Select either the Dräger views or Custom views button under the Adult, Pediatric or Neonate column. An additional popup appears which lists the profiles stored under the selected category.

5. Select as many profiles as you wish to assign the currently selected view to.

6. Select OK.
System configuration

Configuring the alarm setup

The password-protected Alarms pages are for configuring the general alarm settings.

To access the alarms pages

1. Select System setup... on the main menu bar. A password popup appears.
2. Select the Alarms tab.
3. Enter the password and select the Enter button.

4. Select one of the following tabs to access the respective setup page:
 - General settings
 - Volume/ Tone
 - Code
 - Config.
 - M540 settings

Alarms setup – general settings

The following table lists the available settings of the General settings page.
System configuration

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| **All alarms paused** | – 1, 2 (default), 3, 4, 5 min | The button on the alarm toolbar changes to *All alarms paused*. This button is accessible by selecting the symbol on the quick access toolbar, see page 40. When the button is selected, the following happens:
– All alarm functions are temporarily suppressed for the selected time. The alarm function is automatically activated when the alarm pause timer times out.
– The banner *All alarms paused* appears in the header bar on yellow background with a count-down timer and the following symbol:
– No timeout: The button on the alarm toolbar changes to *All alarms off*. This button is accessible by selecting the symbol on the quick access toolbar, see page 65. When the *All alarms off* button is selected, the following happens:
– All alarm functions are suppressed until you select the button again which activates the alarm function.
– The banner *All alarms off* appears in the header bar on red background with the following symbol:
– Disabled: The *All alarms paused* button on the alarm toolbar is grayed out and you cannot temporarily or permanently deactivate alarm monitoring. |
| **Alarm validation** | On (default), Off | When this function is activated, alarm conditions are verified for a certain time before triggering acoustic and visual alarm signals (see page 99). This feature reduces nuisance alarms. |
System configuration

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO₂ alarm delay</td>
<td>– On (default)</td>
<td>The alarm validation feature must be activated to use this setting. When this setting is activated, an SpO₂ lower alarm limit violation must persist for 10 seconds before triggering acoustic and visual alarm signals. This function is not possible if the Nellcor Sat-Seconds alarm feature is set to any value other than Off (see page 259).</td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
<tr>
<td>Alarm limits display</td>
<td>– On (default)</td>
<td>Determines whether alarm limits appear in the parameter boxes.</td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
<tr>
<td>Alarm bar enabled</td>
<td>– On (default),</td>
<td>Determines whether the alarm bar flashes during an alarm.</td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
<tr>
<td>OR Alarms</td>
<td>– On,</td>
<td>Activates/deactivates OR alarms. Alarm functions are affected when OR alarms is activated (see page 107).</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>Cardiac bypass</td>
<td>– On,</td>
<td>Activates/deactivates cardiac bypass mode. Alarm functions are affected when cardiac bypass mode is activated (see page 107). This mode is not available when the French NFC mode is enabled (see page 419).</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>Alarm group</td>
<td>Keypad for configuring an alarm group.</td>
<td>Allows you to configure several monitors as members of a group. All alarms that occur at any of the monitors within the group are broadcast to all other members in the alarm group.</td>
</tr>
<tr>
<td>NIBP/SpO₂ interlock</td>
<td>– On</td>
<td>On – the SpO₂ alarm function is deactivated and the SpO₂ alarm settings appear ghosted during non-invasive blood pressure and Pulse CO-Ox measurements (for more details, see "NIBP/SpO₂ interlock alarms" on page 105).</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>Off – the SpO₂ alarm function is activated during NIBP and Pulse CO-Ox measurements.</td>
</tr>
<tr>
<td>ASY/VF alarms</td>
<td>– Always on (default)</td>
<td>Always on – the ASY/VF alarm functions are always activated.</td>
</tr>
<tr>
<td></td>
<td>– Follow HR alarm</td>
<td>Follow HR alarm – the ASY and VF alarm settings follow the setting of the heart rate alarms.</td>
</tr>
</tbody>
</table>
System configuration

Alarm setup – configuring the alarm volume and tones

The following table lists the available settings of the Volume/ Tone page which controls various tone settings. To access this page, see page 404.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum alarm volume</td>
<td>– 5 %</td>
<td>Determines which alarm volume settings are available under the Alarm volume button. This setting does not affect the volume of the attention or the pulse tone.</td>
</tr>
<tr>
<td></td>
<td>– 10 % to 100 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in increments of 10 %);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 % (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Off</td>
<td></td>
</tr>
<tr>
<td>Alarm volume</td>
<td>Off, 5 %, 10 to 100 % (in increments of 10 %); default is 50 %</td>
<td>Determines the volume of the alarm tone. You can never turn the alarm volume lower than the selected setting for Minimum alarm volume. Make sure the alarm tone volume is set so it can be heard in the monitoring environment. The 5 % setting is only available when the Minimum alarm volume setting is set to 5 %. The Off setting is only available under the following circumstances: – When the Cockpit is in OR mode or assigned to an ICS. – When the Minimum alarm volume feature is set to Off.</td>
</tr>
</tbody>
</table>

WARNING
If you select Follow HR alarm, ASY, and VF alarms are not reported if the heart rate and arrhythmia alarm functions are turned off.
System configuration

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse tone volume</td>
<td>– Off</td>
<td>Determines the volume of the pulse tone.</td>
</tr>
<tr>
<td>– 5, 10 (default) to 100 % (in increments of 10 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention tone volume</td>
<td>– Off</td>
<td>Determines the volume of the attention tone or deactivates the attention tone.</td>
</tr>
<tr>
<td>– 5, 10 (default) to 100 % (in increments of 10 %)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **“Audio off” reminder** | – **On** (default) | Sounds an alert tone every 30 seconds at the Cockpit and at the M540 to remind you that the alarm tone is deactivated during an active alarm condition. This feature is only active when an alarm condition exists. This alert tone is suppressed if you initiate an audio pause. When the Cockpit is in OR mode, the volume of the alert tone corresponds to the **Alarm volume** setting of 10%. When OR mode is not activated, the volume equals to 50%.

This feature is not supported on remote devices.

– **On** – a truncated alarm tone sequence sounds every 30 seconds for an alarm condition of medium or high priority. Low-priority alarms tones are not truncated.

During multiple alarm conditions, the reminder tone adjusts itself to always report the alarm condition with the highest alarm priority.

– **Off** – No alert tone sounds when the alarm volume is deactivated and an alarm occurs.
System configuration

"All alarms off" reminder

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On (default)</td>
<td>When the All alarms paused setting is set to No timeout (see page 405) and you select the All alarms off button, this feature reminds you that alarm monitoring has been deactivated for all alarms.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Whether or not the Cockpit is in OR mode, the volume of the alert tone corresponds to the Alarm volume setting of 50%.</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>- On – an alert tone sounds every 30 seconds during an alarm condition. In addition, the banner area flashes red three times with the message All alarms off and the symbol 🚨. The alarm banner area appears solid until the 30 second pass. Then the tone sounds again and the message and the symbol flash again. On remote devices, the banner does not flash but appears on solid red background with the identical message and symbol. When cardiac bypass mode is activated, this feature is not available.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>- Off – No alert tone sounds when alarm monitoring is deactivated and an alarm occurs.</td>
</tr>
</tbody>
</table>

Tone set

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infinity</td>
<td>Determines the type of alarm tone used (for more information, see "Acoustic alarm signals" on page 102).</td>
</tr>
<tr>
<td></td>
<td>IEC fast (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEC slow</td>
<td></td>
</tr>
</tbody>
</table>
Alarm setup – Code functions

For urgent care, you can configure a set of individual monitoring functions. These functions can be activated simultaneously when you select the Code button on the main menu bar. For more information regarding this function, see page 133.

When the Code button is pressed, a timer along with a Stop and a Reset button appears in the header bar.

The following table lists the available settings of the Code page. To access this page, see page 404.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio pause: Quiet mode</td>
<td>– On</td>
<td>– On – Only alarm conditions of high priority override an active audio pause. The appropriate parameter box flashes. Alarm conditions of equal or lower alarm priority will not be reported with an alarm tone.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>– Off – Any new alarm condition, regardless of its alarm priority, overrides an already active audio pause state at the Cockpit and at the ICS if the patient is admitted there. All visual and audible signals are reported fully for any new alarm condition. For detailed information how quiet mode affects the audio pause behavior, see page 109.</td>
</tr>
<tr>
<td>Continuous recording</td>
<td>– On</td>
<td>– On – a continuous recording starts when you select the Code button.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>– Off – no recording starts when you select the Code button.</td>
</tr>
<tr>
<td>Continuous NIBP mode</td>
<td>– On</td>
<td>– On – continuous NIBP measurements start when you select the Code button.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>– Off – no NIBP measurements start when you select the Code button.</td>
</tr>
<tr>
<td>Audio off</td>
<td>– On</td>
<td>– On – No audible alarm sounds when you select the Code button.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>– Off – Alarm tones sound when you select the Code button.</td>
</tr>
</tbody>
</table>
System configuration

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm volume off</td>
<td>– Yes</td>
<td>– Yes – the acoustic alarm signal for any active alarm is deactivated, the Audio alarms off banner and the symbol appear in the header bar.</td>
</tr>
<tr>
<td></td>
<td>– No (default)</td>
<td>– No – the acoustic alarm signals for any active alarm are not affected when you press the Code button.</td>
</tr>
<tr>
<td>All alarms off</td>
<td>– On</td>
<td>– On – the following happens when you select the Code button.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td>– All audible and visual alarm signals are deactivated at the Cockpit and at the ICS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The banner area flashes red with the message All alarms off. The symbol appears in the header bar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The All alarms paused setting is set to No timeout.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– if the selection All alarms off reminder is set to On, an alert tone sounds every 30 seconds to indicate that the alarms were disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selecting the Code button again causes any existing alarm conditions to be announced immediately.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Off – any existing alarm is still annunciated visually and acoustically when you select the Code button.</td>
</tr>
</tbody>
</table>
Alarm setup – configuring M540 settings

The M540 settings page configures certain M540 settings. These settings will automatically update the M540 settings when the M540 is docked. To access this page, see page 404.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport alarm volume</td>
<td>– 50% (default) to 100% (in increments of 10%)</td>
<td>Determines the speaker volume of the M540 at the Cockpit while the M540 is undocked. The Cockpit setting adjusts the Transport alarm volume setting to match the M540 when it is undocked. The Transport alarm volume setting is tied to the minimum alarm volume setting (see page 407). If the minimum alarm volume is set to a higher volume than the selected Transport alarm volume setting, the Transport alarm volume setting is adjusted to the higher setting. If the minimum alarm setting is set to a lower setting than the current Transport alarm volume setting, the setting does not change.</td>
</tr>
<tr>
<td>Transport pulse tone volume</td>
<td>– Off (default)</td>
<td>Determines the pulse tone volume of the M540 while the device is on transport.</td>
</tr>
<tr>
<td></td>
<td>– 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 10% to 100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(in increments of 10%)</td>
<td></td>
</tr>
<tr>
<td>Keep device label</td>
<td>– Yes (default)</td>
<td>– Yes – The M540 retains the device label of the Cockpit when it undocks.</td>
</tr>
<tr>
<td></td>
<td>– No</td>
<td>– No – the M540 retains the device label configured in the M540 wireless menu.</td>
</tr>
</tbody>
</table>
Configuring the recording and report settings

The Recordings/Reports pages are for configuring general recording and report settings.

To access the Recordings/Reports pages
1. Select System setup... on the main menu bar.
2. Select the Recordings/Reports tab.
3. Select one of the following tabs to access the respective setup page:
 - Reports
 - Recorder setup
 - Rest ECG report
 - Reports setup

Reports setup – Reports page

The following table lists the available settings of the Reports page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG/ST</td>
<td>– ECG report</td>
<td>Prints the selected report. See "Available reports" on page 444 for detailed descriptions of each report.</td>
</tr>
<tr>
<td></td>
<td>– Rest ECG report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ST report</td>
<td></td>
</tr>
<tr>
<td>Alarms</td>
<td>Alarm history report</td>
<td></td>
</tr>
<tr>
<td>Trends/Data</td>
<td>– Trend graph report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Trend table report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Calculations report</td>
<td></td>
</tr>
<tr>
<td>Laser Report</td>
<td>– Continuous wvf. report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Timed wvf. report</td>
<td></td>
</tr>
<tr>
<td>Recording</td>
<td>– Timed recording</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Continuous recording</td>
<td></td>
</tr>
</tbody>
</table>
System configuration

Recorder setup

The following table lists the available settings of the **Recorder setup** page.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>6, 10 (default), 15 s</td>
<td>Determines the amount of delay (pre-event) data included in a timed recording. Delay data refers to data that originated before the recording was initiated. A marker on the strip recording marks where the delay data ends and the real-time data starts.</td>
</tr>
<tr>
<td>Duration</td>
<td>6, 10, 15, 20 s (default)</td>
<td>Determines the length of a timed recording.</td>
</tr>
<tr>
<td>Speed</td>
<td>6.25, 12.50, 25.00 (default), 50.00 mm/sec</td>
<td>Determines the recording speed.</td>
</tr>
</tbody>
</table>
| **Waveform selection** | – **Auto** (default) – **Manual** | – **Auto** – the top two displayed waveforms are automatically selected for recordings. If no waveforms are displayed, no recording is generated.
– **Manual** – the two selected waveforms under **Waveform 1** and **Waveform 2** are printed. |
| **Waveform 1** | Selected parameter under **Waveform selection** setting (factory default is ECG Lead II) | Assigns the selected waveform to the top channel on R50N recordings, provided the **Waveform selection** is set to **Manual**. |
| **Waveform 2** | Selected parameter under **Waveform selection** setting (factory default is ECG lead V) | Assigns the selected waveform to the bottom channel on R50N recordings, provided **Waveform selection** is set to **Manual**. |
| **Alarm waveform** | – **On** (default) – **Off** | When this function is activated, the waveform of an alarming parameter of medium or high priority is printed in the second recording channel provided the archive function is activated (see page 118). |
Rest ECG setup

Appropriate settings are crucial for optimal 12-lead analysis. The following table lists the available settings of the Rest ECG report page which controls various settings. To access this page, see page 413.

NOTE
The Rest ECG report is only available for adult and pediatric patients.

To obtain an optimal automatic diagnostic interpretation of an Rest ECG report, make sure the selections in the following table and the **Weight**, **Height**, and **Birth date** in the Demographics page (see page 89) are configured appropriately for the patient.

NOTE
If the ECG Filter is set to **ESU**, Rest ECG report cannot be generated.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td>The selected information is included in the report.</td>
</tr>
<tr>
<td></td>
<td>– Unknown (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Male</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Female</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Unknown (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Caucasian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Asian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– African</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Other</td>
<td></td>
</tr>
<tr>
<td>Medication 1</td>
<td>No meds, Unknown (default), list of medications</td>
<td></td>
</tr>
<tr>
<td>Medication 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition 1</td>
<td>Selection list with several choices for indicating the medical condition of the patient. (Unknown is the default)</td>
<td></td>
</tr>
<tr>
<td>Condition 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>List of entries for annotating the condition of the patient. (None is the default)</td>
<td></td>
</tr>
<tr>
<td>Rest ECG report</td>
<td>Print button</td>
<td>The button is grayed out and not selectable when:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The patient is not admitted at the ICS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The Rest ECG analysis feature is not activated at the ICS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The 12-lead ECG option is not unlocked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The required 12-lead cable is not connected.</td>
</tr>
</tbody>
</table>
System configuration

Reports setup – Reports setup page

The following table lists the available settings of the Reports setup page. To access this page, see page 413.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform delay [s]</td>
<td>6, 10 (default), 15 s</td>
<td>Determines the amount of delay (pre-event) data included in a timed waveform report. Delay data refers to data that originated before the report was initiated. A marker on the report marks where the delay data ends and the real-time data starts.</td>
</tr>
<tr>
<td>Waveform duration [s]</td>
<td>10, 20 s (default)</td>
<td>Determines the length of a waveform report.</td>
</tr>
<tr>
<td>Trend duration [hr]</td>
<td>1, 2, 4, 8, 12, 24 (default), 48, 72, 96 hr</td>
<td>Determines the graphical trend interval on the graphical trend report.</td>
</tr>
<tr>
<td>Table interval [min]</td>
<td>1, 5, 10, 15 (default), 30, 60 min</td>
<td>Determines the tabular trend interval on the tabular trend report.</td>
</tr>
</tbody>
</table>

Biomed setup

This section describes several pages accessible only to authorized personnel. All Biomed pages are password protected.

To access the biomed pages

1. Select System setup... on the main menu bar.
2. Select the Biomed tab.
3. Enter the password and select Enter.
4. Select one of the following tabs:
 - Country
 - Units of measure
 - Patient monitor
 - Name service
 - Network setup (select either the Infinity or Hospital tab)
 - Printer setup
 - Recorder setup
 - Service
 - IT setup (select the desired tab such as Web browser, Innovian, and so on).
Biomed setup – country-specific settings

The following table lists the available settings of the Country page. To access this page, see page 416.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English (United States), German (Germany), French (France), French (Belgian), Dutch (Belgian), Spanish (Traditional sort), Italian (Italy), Finnish, Danish, Norwegian (Bokmal), Portuguese (Brazil), Swedish, English (United Kingdom), Dutch (Netherlands), Japanese, Russian, Turkish, Polish, Greek, Hungarian, Chinese (PRC), Czech</td>
<td>Selects the language of the Cockpit screen text. You must select the language of the M540 independently.</td>
</tr>
<tr>
<td>Time zone</td>
<td>User-selectable list of time zones</td>
<td>Allows you to configure the Cockpit for the local time zone.</td>
</tr>
</tbody>
</table>
| Daylight savings | – **On**
| | – **Off** (default) | Allows you to activate or deactivate automatic activation of daylight savings time based on the regional setting. |
| Time | Time and date fields | Allows you to set the regional time and date. |
Biomed setup – units of measure

The following table lists the available settings of the *Units of measure* page where you can configure the units for all parameter groups. To access this page, see page 416. Select the **Apply** button after making your selection.

CAUTION

Before you connect the M540 to a different Cockpit, make sure that the units of measure align between the two devices. Differing units of measure could result in loss of data or a patient discharge.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>– mmHg (default)</td>
<td>Assigns the selected unit of measure to the parameter. When you change a unit of measure, the Cockpit discharges the patient.</td>
</tr>
<tr>
<td></td>
<td>– kPa</td>
<td></td>
</tr>
<tr>
<td>etCO2</td>
<td>– mmHg (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– kPa, %</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>– °C (Celsius) default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– °F (Fahrenheit)</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>– mm (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– mV</td>
<td></td>
</tr>
<tr>
<td>SpHb</td>
<td>(only Masimo rainbow SET)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– g/dL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– mmol/L</td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>– kPa (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– %</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>– kg (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– lb (adult, pediatric)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– oz, g (neonate)</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>– cm (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– in</td>
<td></td>
</tr>
</tbody>
</table>
System configuration

Biomed setup – patient monitor setup

The following table lists the available settings of the *Patient monitor* page. To access this page, see page 416.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change clinical password</td>
<td>User input</td>
<td>Allows you to define a new clinical password directly on the M540 when it is docked. If after changing the password the M540 docks to a Cockpit with a clinical password that differs from the M540, the Cockpit password applies. Be sure to record the new password because you cannot retrieve it once it is lost. For further assistance, contact DraegerService.</td>
</tr>
<tr>
<td>French NFC mode</td>
<td>On – Off (default)</td>
<td>When this feature is activated, HR alarms cannot be deactivated, and the all alarm pause period cannot exceed 3 minutes.</td>
</tr>
<tr>
<td>Simulation (basic)</td>
<td>On – Off (default)</td>
<td>Activates or deactivates basic simulation mode. This feature is used when the M540 is connected. When activated, the Cockpit uses the simulator mode from the M540 and adds additional device connectivity parameters.</td>
</tr>
<tr>
<td>Simulation (advanced)</td>
<td>On – Off (default)</td>
<td>Activates or deactivates full simulation mode. This selection is only available when no M540 is docked. If an M540 is docked, the selection appears grayed out. When this feature is activated, the Cockpit simulates all parameters and waveforms. The message Simulated Patient Data appears in the header bar. Button appears grayed out and is not selectable.</td>
</tr>
<tr>
<td>External display</td>
<td>Analog – Digital (default)</td>
<td>Selects the output for the external display.</td>
</tr>
<tr>
<td>Airway adapter</td>
<td>Disposable – Reusable (default)</td>
<td>Configures the Cockpit and the M540 for a specific type of airway adapter. If the setting does not match the hardware that is being used, the displayed CO2 value is compromised.</td>
</tr>
</tbody>
</table>
System configuration

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient profile selection</td>
<td>– On</td>
<td>When this feature is activated, you can select a profile and patient category on the Start dialog.</td>
</tr>
<tr>
<td></td>
<td>– Off (default)</td>
<td></td>
</tr>
<tr>
<td>Set OR alarms</td>
<td>– Auto</td>
<td>Auto – OR alarms are automatically activated when an anesthesia machine is connected.</td>
</tr>
<tr>
<td></td>
<td>– Manual</td>
<td>Manual – OR alarms must be activated manually when an anesthesia machine is connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whenever you disconnect the A500 from the Cockpit, the OR Alarms and Cardiac bypass features are disabled automatically regardless of their setting.</td>
</tr>
<tr>
<td>HLM/Bypass sync</td>
<td>– Auto</td>
<td>Auto – when an anesthesia machine is connected and the OR Alarms setting is activated at the Cockpit, the Cardiac bypass feature is automatically activated when the A500 is in heart lung mode. Cardiac bypass is automatically disabled when the A500 is no longer in heart lung mode.</td>
</tr>
<tr>
<td></td>
<td>– Manual</td>
<td>Manual – when an anesthesia machine is connected and the OR Alarms setting is activated at the Cockpit, the Cardiac bypass feature must be activated manually (see page 406).</td>
</tr>
<tr>
<td>Restore factory settings</td>
<td>None</td>
<td>Restores all patient and monitoring settings to the factory defaults. Do not restore factory defaults while monitoring a patient.</td>
</tr>
</tbody>
</table>
System configuration

Biomed setup – name service settings

The following table lists the available settings of the Name service page. To access this page, see page 416. After making the desired changes, select the Apply button which causes a brief loss of communication with a docked M540.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring unit ID</td>
<td>1 to 255 (increments of 1)</td>
<td>Allows you to assign the Cockpit to a monitoring unit by entering an ID using the keypad symbol.</td>
</tr>
<tr>
<td>Monitoring unit label</td>
<td>Up to seven alphanumeric characters</td>
<td>Allows you to enter the corresponding label for the network and recordings using the keyboard symbol.</td>
</tr>
<tr>
<td>Care unit label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable central station</td>
<td>– On (default) – Off</td>
<td>If this feature is activated and an ICS is connected to the network, the message Not monitored by central appears in the Cockpit header bar if the Cockpit is not assigned to an ICS. For more information, (see page 76). If this feature is deactivated, an ICS is connected to the network and the Cockpit is not assigned to an ICS, the message Not monitored by central does not appear in the Cockpit header bar.</td>
</tr>
<tr>
<td>Enable remote control</td>
<td>– On (default) – Off</td>
<td>If this feature is activated, the Cockpit allows other Infinity monitors and the ICS to view its data and perform simple functions, such as requesting a recording or pausing an alarm.</td>
</tr>
<tr>
<td>Enable remote silence</td>
<td>– On (default) – Off</td>
<td>If this feature is activated, the Cockpit allows alarms to be silenced from network devices.</td>
</tr>
</tbody>
</table>
System configuration

Biomed setup – network setup

The following table lists the available settings for configuring the Infinity and the hospital network settings in the *Infinity* and the *Hospital* pages. To access the pages, see page 416. After making the desired changes, select the **Apply** button to activate them.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| **DHCP** | – Disabled *(default)*
 – Enabled | Applies to the hospital network. When the Dynamic Host Configuration Protocol (DHCP) is activated, the settings for IP address, Subnet mask, Gateway, and Primary DNS are pulled automatically from the server. |
| **IP address** | User selectable | Allows you to select an IP address manually *(the DHCP setting has to be set to Disabled)*. |
| **Subnet mask** | User selectable | Allows you to set up a subnet mask *(the DHCP setting has to be set to Disabled)*. |
| **Gateway** | User selectable | Allows you to set up a gateway *(the DHCP setting has to be set to Disabled)*. |
| **Primary DNS** | User selectable | Allows you to set up the primary Domain Name System (DNS) – set the DHCP setting to Disabled. |
| **Offline detection** | – On *(default)*
 – Off | Determines if the Cockpit issues an alarm tone and a message when it loses its connection to the Infinity network. For more information, see "Communicating with the Infinity network" on page 40. |
Biomed setup – printer setup

The following table lists the available settings of the *Printer setup* page. To access this page, see page 416. After making the desired changes, select the *Apply* button.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer IP address</td>
<td>User selectable</td>
<td>Allows you to configure the IP address for printing reports on a network printer.</td>
</tr>
<tr>
<td>Printer type</td>
<td>User selectable</td>
<td>Allows you to select the type of laser printer used for printing reports.</td>
</tr>
<tr>
<td>Paper size</td>
<td>Letter, Legal, A4</td>
<td>Allows you to select the printer paper.</td>
</tr>
<tr>
<td>Print test page</td>
<td>Select the Print screen button, to verify that the printer is working properly.</td>
<td></td>
</tr>
</tbody>
</table>

Biomed setup – recorder setup

The following table lists the available settings of the *Recorder setup* page. To access this page, see page 416.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Available settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary recorder</td>
<td>Recorders are available for selection once they are connected to the network.</td>
<td>Selects a recorder as the primary recorder for printing recordings.</td>
</tr>
<tr>
<td>Secondary recorder</td>
<td></td>
<td>Selects the secondary recorder for printing recordings when the primary recorder is not available.</td>
</tr>
</tbody>
</table>
The following table lists the available settings of the Service page. To access this page, see page 416.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Biomed tab

B Product identification field displaying software-specific information (for example, software version, and so on).

C Select this button to copy all logs to the connected USB memory stick.

D Select this button to export the current profiles to the connected USB memory stick.

E Select this button to import the profiles from the connected USB memory stick.

F Select this button to export the shared system profile

G Select this button to import the shared system profile

H Window displaying status messages relating to the function that is being executed.

I Service button for accessing Service-related functions such as unlocking options (refer to the Technical documentation available from DrägerService for detailed information).
Biomed IT setup

The IT page consists of several setup pages for performing the following IT-specific tasks:
- Activating or deactivating all IT tabs
- Configuring a web browser
- Configuring Citrix applications
- Configuring IT applications

Activating/deactivating IT tab feature

When the web enabled tabs option is unlocked, the Cockpit supports IT applications (options) that are accessible via IT tabs (see "Supported IT applications" on page 452). When an IT application is configured and the tab is activated, the corresponding IT tab appears along the left edge of the screen as soon as the IT tab feature is activated. Regardless of how many IT tabs are configured, the top tab is always labeled *Patient* and provides access to the Cockpit main screen.

To activate or deactivate IT tab feature

1. Access the *IT setup* page (see page 416).
2. Select the *IT tabs* button.
3. Select the *On* or *Off* button next to the *IT tabs* selection.

Configuring IT tabs – web browser setup

You can set up a web browser as an IT tab that contains several pre-configured Web pages. These Web pages are accessible from a pull-down dialog under the configured IT tab (see "Accessing an IT tab" on page 451).

CAUTION
The Infinity Acute Care System – Monitoring Applications (IACS) does not have virus protection software and relies therefore on the firewall of your institution to prevent access to infected files. While setting up IT applications to access web sites, evaluate each web site with regard to possible virus infection.
The following diagram shows the **Web browser** page. The left side displays a selection list which is reserved for pre-configured web sites. The right side is for setting up new sites or for editing existing ones. The site with the asterisks is the default site that appears automatically when you access the corresponding IT tab.

Adding a web browser page

In the following steps, the letters in parentheses refer to the diagram of the **Web browser** page.

1. Access the **Web browser** page (see page 416).
2. Select the **Add** button (K). The label **Undefined** appears in the selection list (J) as a placeholder.
3. Select the following buttons to configure the corresponding settings:
 - Select the **/** symbol next to the **Name** menu selection (D) to activate an on-screen keyboard for changing the label **Undefined** to an actual name.
 - Select the **/** symbol next to the **URL** menu selection (E) to activate an on-screen keyboard for entering the URL.
 - Select the **Default** on/off buttons (F) to activate or deactivate this site as a default in the selection list (J).
 - Select the **Block Popups** on/off button (G) to allow or prevent popups from appearing on the web site.
 - Select **Full Trust** on/off button (H) to select the security setting for this web site.
4. Select the **Tab visible** on/off buttons (I) to display or hide the IT tab.

Once a web browser is correctly set up, the web site is accessible under the corresponding IT tab (for more information, see "Accessing an IT tab" on page 451).
Deleting a web browser page

In the following steps, the letters in parentheses refer to the diagram of the Web browser page on page 426.

To delete a web browser page
1. Access the Web browser page (see page 416).
2. Select the web site you wish to delete in the selection list.
3. Select the Delete button (L).

Configuring Citrix applications

The following diagram shows the Application page for configuring Citrix applications. Citrix allows you to access remote applications without running the actual application on the Cockpit.

A Application tab
B IT tabs
C Name symbol and field
D Name column
E Value column
F List of Citrix client object properties
G Auto logoff on/off buttons
H Tab visible on/off buttons
I Edit button
J Delete button
K Add button
To configure a Citrix application

In the following steps, the letters in parentheses correspond to the diagram for the Application page (see page 427).

1. Access the Application page (see page 416).
2. Select the symbol next to the Name menu selection (C) to activate an on-screen keyboard for changing the name of the IT tab label (the name of the actual tab in the IT setup page does not change).
3. Define the ICA client object properties needed for connection to your Citrix environment. The Name column (D) defines the property being used and the Value column (E) defines the value needed.

Refer to the Citrix ICA Client Object documentation for more information.

Configuring IT tabs

The following diagram shows an example of an IT page. When the appropriate IT application option is unlocked, IT tabs appear with the corresponding label of a pre-configured URL address, provided the web enabled tab option is also unlocked.

- **A** Biomed tab
- **B** IT tabs for accessing setup pages for the corresponding IT applications.
- **C** Name button and description field
- **D** URL button and description field
- **E** Full Trust on/off buttons
- **F** Block Popups on/off buttons
- **G** Tab visible on/off buttons
To configure an IT application tab

In the following steps, the letters in parentheses correspond to the diagram for the IT setup page (see page 428).

1. Access the IT setup page (see page 416).
2. Select the tab of the IT application you wish to configure.
3. Select the following buttons to configure the corresponding settings:
 - Select the symbol next to the Name menu selection (C) to activate an on-screen keyboard for changing the name of the IT label (the name of the actual tab in the IT setup page does not change).
 - Select the symbol next to the URL menu selection (D) to activate an on-screen keyboard for entering the URL.
 - Select the Full Trust on/off buttons (E) to select the security setting for this web site.
 - Select the Block Popups on/off button (F) to allow or prevent popups from appearing on this web site.
4. Select the Tab visible on/off button (G) to display or hide the tab.

CAUTION

The URL address shows a pre-configured string. Do not change any portion of the string except for the <server name> to preserve the correct information.

NOTE

IT tabs appear ghosted and are therefore not selectable while the application is loading. A tab may also appear ghosted the first time an application is turned on.

Once an IT application is correctly set up, the web site is accessible under the corresponding IT tab (for more information, see "Accessing an IT tab" on page 451).
Profile setup

A profile ‘remembers’ patient settings and device settings for future use. Profiles eliminate time-consuming setup tasks that would otherwise have to be repeated for each monitoring session. Each patient category has one default profile. All tasks related to profiles take place in the Profiles pages.

Selecting a profile

The following diagram shows the Select profile page where you can select a profile with pre-configured patient and device settings.

To select a profile

1. Select the System setup... button on the main menu bar.
2. Select the Profiles tab (A) > Select profile tab (B).
3. Select the desired patient category button:
 - Adult (C)
 - Pediatric (D)
 - Neonate (E)
4. Select the arrow button next the Profile menu selection (F) to display a list of profiles within the selected patient category. If available, a description of the selected profile appears in the description field (G).
Saving profiles

For each patient category, you can create and save five unique profiles. Included in the five profiles is a Dräger default profile that cannot be modified. The following diagram shows the **Save profile** page where you can modify existing profiles and save new ones.

System setup

1. Make sure the Cockpit is in the correct patient category before configuring the profiles (see "Selecting the patient category" on page 93).
2. Make the desired changes to the patient settings.
3. Select the **System setup...** button on the main menu bar.
4. Select the **Profiles** tab (A).
5. Select the **Save profile** tab (B). A password popup appears.
6. Enter the password and select the **Enter** button.
7. Select the arrow button (F) next to the **Profile** menu selection. A summary of the selected profile appears in the description field (G).
8. Select the **Save profile** button (I) to apply the changes to the selected profile.

Modifying an existing profile

You can save changes to an existing profile. The only profile you cannot modify is the Dräger default profile. The Dräger default profile is activated the very first time the system is booted up, after a software upgrade or after factory defaults are restored.

The adult profiles, pediatric profiles, neonate profiles pages have identical setup functions. The only exception is their content which is patient-category specific. This is important when you are resetting all profiles to Dräger profiles. Only the profiles within the currently selected patient-category are affected.

To save changes to an existing profile

In the following steps, the letters in parentheses correspond to the diagram for the **Save profile** page.

1. Make sure the Cockpit is in the correct patient category before configuring the profiles (see "Selecting the patient category" on page 93).
2. Make the desired changes to the patient settings.
3. Select the **System setup...** button on the main menu bar.
4. Select the **Profiles** tab (A).
5. Select the **Save profile** tab (B). A password popup appears.
6. Enter the password and select the **Enter** button.
7. Select the arrow button (F) next to the **Profile** menu selection. A summary of the selected profile appears in the description field (G).
8. Select the **Save profile** button (I) to apply the changes to the selected profile.
Saving a new profile

You can also save a profile under a new name and assign it to an existing view using the **Save profile** pop-up window.

To save a new profile

1. Repeat steps 1 to 6 for saving changes to an existing profile (see page 431).
2. Select the **Save profile as** button (H) in the **Save profile** page (see diagram on page 431). The **Save profile** pop-up window appears.
3. Select the setup buttons next to **Profile name** (A), **Description** (B), and **Default view** (C) to enter the corresponding information.
4. Select the **Save profile** button (D).

A **Profile name** field and setup button
B **Description** field and setup button
C **Default view** field and selection button
D **Save profile** button
Configuring profiles

The following diagram shows a patient-specific Profiles page for configuring profiles. These pages allow you to modify existing profiles such as the name of the profile, the profile description, and so on.

There are three pages for each patient category (adult, pediatric, and neonate).

To access the patient-specific Profiles pages

1. Select the System setup... button from the main menu bar.
2. Select the Profiles tab.
3. Select the Profiles/views tab.
4. Select either the Adult (A), Neonate (B), Pediatric (C) tabs to access the patient category-specific pages.
Configuring the patient-specific profiles

In the following steps, the letters in parentheses correspond to the diagram for the patient-specific Profiles page (see page 433).

To configure the profiles

1. Access the patient-specific profiles page.
2. Select the desired profile in the selection list (K).
3. Select one or more of the following buttons:
 - Select the Set as default button (E) to designate the selected profile as the new default profile for the selected patient category. After each patient discharge or a restart of the Cockpit, the default profile is automatically loaded when that patient category is selected.
 - Select the Delete profile button (F) to delete the selected profile.
 - Use the button next to the Profile name field (G) of the profile page to name the profile. The name appears in the Select profile page (see page 430).
 - Use the button next to the Description field (H) of the profile page to add or modify an existing description. The description appears in the Select profile page (see page 430) when you select a profile.
 - Select the arrow button next to the Default view field (I) and select the view that you wish to designate as the default view.
Transferring profiles

You can transfer profiles over the network or with a USB memory stick.

NOTE
Use a FAT32 memory stick for importing or exporting profiles. USB sticks with NTFS format do not produce reliable results.

Only patient profiles can be transferred over the network. See page 436 for details on how to transfer shared system profiles.

NOTE
Whenever you use the transfer profile function, all existing profiles for all patient categories are transferred simultaneously.

Transferring patient profiles over the network

Transferring patient profiles over the network is only possible among Cockpits within in the same monitoring unit. The following diagram shows the Profile transfer page which consists of a list of connected devices within the monitoring unit.

A Profiles tab
B Device name column
C Status column
D Profile transfer tab
E Start transfer button
F Clear selection button
G Select all button

System setup

System configuration
To transfer a profile over the network

1. Select the System setup... button on the main menu bar.
2. Select the Profiles > Profile transfer tabs.
3. Enter the clinical password. The Profile transfer page which lists all the devices in the monitoring unit appears.
4. Select a device from the list or select one of the following buttons:
 - Select all button (G) to select all devices to transfer profiles to.
 - Clear selection button (F) to remove any selection from the device list.
5. Select the Start transfer button (E) to start the profile transfer.

The profiles are transferred to the target Cockpit but are not implemented until you select a new profile.

NOTE
When profiles are transferred to a device with older compatible software, any new profile functionality is not transferred.

Importing and exporting profiles using a USB memory stick

You can import and export patient and shared system profiles from one Cockpit to another using a USB memory stick.

Whenever you import or export patient profiles or shared system profiles, all settings of the selected profile are transferred. For information what settings are included in a patient or a shared system profile, see page 76 and page 77 respectively.

If you are importing shared system profiles from a Cockpit that has options unlocked (such as physiological calculations) that are locked on the destination Cockpit, the shared system profiles are imported. However, the settings relating to the locked feature will not become active until the option is unlocked on the destination Cockpit.

NOTE
If an M540 is docked its profiles are also imported/exported as part of the patient profiles.

Unlike transferring profiles over the network, using a USB memory stick has the advantage that the Cockpits do not have to reside in the same monitoring unit.

To export patient and shared system profiles to a USB memory stick

1. Insert a USB memory stick into one of the USB ports of the Cockpit whose profiles you wish to transfer.
2. Select the System setup... button from the main menu bar.
3. Select the Biomed tab.
4. Enter the Biomed password.
5. Select the Service tab.
6. Select the Export patient profile button to export all patient profiles to the USB memory stick.
 or
 Select the Export shared system profile button to export all shared system profiles to the USB device.

A message appears in the text window indicating that the profiles have been successfully exported. A corresponding message appears if the export is unsuccessful.
To import patient profiles from a USB memory stick

1. Insert the USB device in the USB port of the Cockpit where you wish to transfer the profiles to.

2. Select the **System setup...** button from the main menu bar.

3. Select the **Biomed** tab.

4. Enter the Biomed password.

5. Select the **Service** tab.

6. Select the **Import patient profile** button to import all patient profiles from the USB memory stick to the Cockpit.

 Messages appear in the text window informing you if the patient profiles imported successfully or not.

To import shared system profiles from a USB memory stick

1. Insert the USB device in the USB port of the Cockpit where you wish to transfer the profiles to.

2. Select the **System setup...** button from the main menu bar.

3. Select the **Biomed** tab.

4. Enter the Biomed password.

5. Select the **Service** tab.

6. Select the **Import shared system profile** button to import all shared system profiles from the USB device to the Cockpit. A confirmation popup appears stating that the Cockpit will reboot if you press the **Import** button.

7. Select the **Import** button in the confirmation popup to start importing the patient profiles, or

 Select **Cancel** to stop the procedure and dismiss the popup.

 Messages appear in the text window informing you if the shared system profiles imported successfully or not. Once the system profiles are imported, the Cockpit reboots.
Reports/recordings

Overview .. 440
R50N recorder 440
Replacing the recorder paper 440

Timed recordings 441
Remote Recordings 441
Automatic alarm recordings 442

Continuous recordings 443
Causes for automatic cancellation of recordings 443

Requesting recordings 443

Available reports 444
Printing reports 444
Configuring a case summary report 448
Overview

The Cockpit offers a real-time record of its monitoring results on an R50N recorder. In addition, you can request various reports and print screens which are printed on a laser printer.

NOTE
Ventilation waveforms are not supported on recordings.

The content of the recordings and reports depend on the configured settings. You can customize the recording and report settings in the Recordings/Reports pages (see page 413).

Messages relating to recordings and reports are listed on page 491.

R50N recorder

Timed and continuous strip recordings are printed on an R50N recorder which is connected to the network or to the PS250 / P2500 using a cross-over cable. The R50N is a two-channel strip recorder.

Replacing the recorder paper

To replace the paper

1. Open the paper door and remove the empty paper roll and any paper remaining in the printing mechanism.
2. Place a new paper roll with printed side facing up into the spool holder. Unroll a few inches of paper from the bottom.
3. Align the paper roll with the paper guides, and close the door. (If not aligned properly, the paper may jam.)
4. Generate a timed recording to verify that the recorder is connected properly, and the paper is loaded correctly.

A Stop key – stops a recording in progress
B mm/s key – does not function
Timed recordings

From the Cockpit, you can request timed strip recordings that are printed on an R50N recorder (see page 443). Timed recordings can be requested manually or triggered automatically depending on configured alarm settings.

If a signal source becomes unavailable, for example due to a disconnected lead or a cable, while a recording is printing, the associated parameter data and waveform appear as blank data on the strip recording.

A timed recording contains data of a specified duration which is configurable from 6 seconds to 20 seconds (see “Configuring the recording and report settings” on page 413). A timed recording contains delay data that originated before the recording was initiated and real-time data that was acquired after the recording started. The ratio of delay and real-time data are configurable (see page 413). Strip recordings also include pacer spikes if present.

The header of a timed recording contains the following information:
- Parameter values at the time the recording starts printing
- Patient name and ID number
- Date and time

The following diagram shows a typical timed recording.

Remote Recordings

You can also request a recording from another monitor or the ICS. Remote recordings use the delay, duration, and speed recorder settings of the Cockpit not the remote device from which you request the recording.
Automatic alarm recordings

When the **Alarm waveform** feature is activated (see page 413), timed alarm recordings are generated automatically whenever a parameter whose archive function is activated goes beyond the set alarm limits.

Alarm recordings are also generated when an arrhythmia event with an alarm classification of high or medium occurs.

The following sections describe how to set up a parameter or arrhythmia event to generate an automatic alarm recording.

To set up a parameter:

1. Select the parameter box of the parameter whose alarm function you wish to activate or deactivate to access that parameter page directly.

 or

 Select **Sensor parameters...** from the main menu bar > select the desired parameter tab to access the page.

2. Select the button next to the **Archive** setting and select either **Store, Str/Rec, Record** to generate a recording or **Off** to deactivate the feature.

To assign an alarm grade to arrhythmia events:

1. Select the **Alarms...** button on the main menu bar.
2. Select the **Limits** tab (if not already selected).
3. Select the **ARR** tab along the right side to display the **ARR** page.
4. Touch the field in the **Alarm** column of the parameter whose alarm grade you want to modify.
5. Select the field in the **Archive** column and select either **Store, Str/Rec, Record** to generate a recording or **Off** to deactivate the feature.
6. Press the rotary knob to confirm the setting.
Continuous recordings

Continuous recordings are almost identical to timed recordings (see illustration on page 441). The only difference is that a continuous recording runs until you manually interrupt it unlike a timed recording, which runs for a specified time.

The waveform labels, scale bars, and the scales are printed once for each parameter.

To request a continuous recording

- Select the symbol next to the Trends/Data... button on the main menu bar > Continuous recording.

Causes for automatic cancellation of recordings

Any active timed or continuous recording is automatically canceled under the following circumstances:

- If the Cockpit loses its connection to the network. The recordings resume when the network connection is restored.
- If you place the Cockpit into standby mode
- If you discharge a patient

Requesting recordings

The following table lists where you can request manual timed and continuous recordings.

<table>
<thead>
<tr>
<th>Type of report</th>
<th>Description</th>
<th>How to request the recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed recording</td>
<td>A strip recording of a specified duration (see page 441).</td>
<td>- Select the symbol next to the Trends/Data... button on the main menu bar > Timed recording</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Timed recording</td>
</tr>
<tr>
<td>Continuous recording</td>
<td>A strip recording that continues until manually stopped (see page 443).</td>
<td>- Select the symbol next to the Trends/Data... button on the main menu bar > Continuous recording</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Continuous recording</td>
</tr>
</tbody>
</table>
Available reports

If an IACS patient is admitted at the ICS for central monitoring or was previously admitted there and the data have been archived, you can request the following reports from the Cockpit. The reports are printed on any compatible laser printer.

The reports are printed based on pre-configured settings (see page 416). The header of all reports contains the following information:

- Patient name and ID number
- Hospital name
- Care unit
- Bed name
- Parameter labels and values (for ECG, ST, timed waveform and continuous waveform reports only)

The footer of all reports contains the following information:

- Date
- Page number
- Report title

Printing reports

The following table outlines the types of reports that are available. Most reports can be requested from several places on the Cockpit.

<table>
<thead>
<tr>
<th>Type of report</th>
<th>Description</th>
<th>How to request the report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print screen</td>
<td>Prints the current display. Whenever you request a print screen, it is printed on the connected laser printer.</td>
<td>C700: Select the Print screen button on the main menu bar. C500: Select the symbol next to the Views... button on the main menu bar. If a keyboard is connected to the Cockpit, you can also use the print screen key of the keyboard to generate a print screen.</td>
</tr>
<tr>
<td>ECG report</td>
<td>Prints the waveforms of the connected ECG leads. This report is not of diagnostic quality.</td>
<td>Select the symbol next to the Trends/Data... button on the main menu bar > Rest ECG report. Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > ECG report</td>
</tr>
</tbody>
</table>
Reports/recordings

<table>
<thead>
<tr>
<th>Type of report</th>
<th>Description</th>
<th>How to request the report</th>
</tr>
</thead>
</table>
| Rest ECG report 1) | This 12-lead diagnostic report is generated in different stages. Although you request the report at the Cockpit, the M540 collects the actual ECG data, and the ICS prints it. To be able to generate such a report, the Cockpit must be in the same monitoring unit as the ICS, and the Rest ECG analysis option must be installed at the ICS. The report is available in several formats that can be customized at the ICS (refer to the ICS instructions for use). You can also configure the content of a Rest ECG report, see "Rest ECG setup" on page 415. When requesting a Rest ECG report, use the 1mV/cm scale to avoid overlapping ECG waveforms. | • Select the symbol next to the Trends/ Data... button on the main menu bar > Rest ECG report
• Select to the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Rest ECG report
The Rest ECG report is only available for adult and pediatric patients. To obtain an optimal automatic diagnostic interpretation of an Rest ECG report, make sure the required settings are configured appropriately for the patient (see page 415). |
| Timed waveform report | Prints waveform strips of all currently displayed waveforms (the waveform duration and delay time settings are configurable, see page 416). | • Select the symbol next to the Trends/ Data... button on the main menu bar > Timed wvf. report
• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Timed wvf. report |
| Continuous waveform report | Prints waveform strips of all currently displayed waveforms (prints a maximum of five pages). | • Select the symbol next to the Trends/ Data... button on the main menu bar > Continuous wvf. report
• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Continuous wvf. report |
| ST report | Prints the ST complexes currently displayed on ST screen. This report is not of diagnostic quality. | • Select the symbol next to the Trends/ Data... button on the main menu bar > ST report.
• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > ST report
• Select the Sensor parameters... button on the main menu bar or the ST parameter box if it is displayed > ECG > ST complex > Print |

1) If configured to appear on the main menu bar, the buttons for requesting these reports button are also accessible on the main menu bar. For more information, see page 398.
Reports/recording

<table>
<thead>
<tr>
<th>Type of report</th>
<th>Description</th>
<th>How to request the report</th>
</tr>
</thead>
</table>
| Trend graph report ¹ | Prints the contents of the trend graphs according to the selected **Trend duration [hr]** setting (see page 416). Trend graph reports do not include discrete data such as C.O. and NIBP. | - Select the symbol next to the **Trends/ Data...** button on the main menu bar > **Trend graph report**.
- Select the **Trends/ Data...** button on the main menu bar > **Trends > Graph > Print**
- Select the **Trends/ Data...** button on the main menu bar > **Trends > Reports > General reports > Trend graph report** |
| Recruitment trend graph report | Prints the values of the **Recruitment** page (see page 167) corresponding to the Cursor 1 and Cursor 2 positions. It also contains the Delta values between the Cursor 1 and the Cursor 2 values. | - Select the **Procedures...** button from the main menu bar > **Recruitment** tab > **Print**.
The **Print** button is only available after you mark a portion of the trend graphs with the cursor buttons. |
| Trend table report ¹ | Prints the contents of the trend table according to the selected **Table interval [min]** setting (see page 416). | - Select the symbol next to the **Trends/ Data...** button on the main menu bar > **Trend table report**
- Select the **Trends/ Data...** button on the main menu bar > **Trends > Table > Print**
- Select the **Trends/ Data...** button on the main menu bar > **Trends > Reports > General reports > Trend table report** |
| Graph vitals report | Prints the contents of the **Graph vitals** page. | - Select the **Trends/ Data...** button on the main menu bar > **Trends > Graph vitals > Print** |
| Ventilation/anes-thesia report | Prints the contents of the **Ventilation / Anesthesia** page. A ventilator report requested from the ICS does not print the ventilator settings. | - Select the **Trends/ Data...** button on the main menu bar > **Trends > Ventilation / Anesthesia > Print** |
| Alarm history report | Prints the contents of the **Alarm history** page. | - Select the symbol next to the **Trends/ Data...** button on the main menu bar > **Alarm history report**.
- Select the **Trends/ Data...** button on the main menu bar > **Trends > Reports > General reports > Alarm history report**
- Select the **Alarms...** button on the main menu bar > **Alarm history > Print** |

¹ If configured to appear on the main menu bar, the buttons for requesting these reports button are also accessible on the main menu bar. For more information, see page 398.
<table>
<thead>
<tr>
<th>Type of report</th>
<th>Description</th>
<th>How to request the report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculations report</td>
<td>Prints the calculations results currently displayed in the Calculations page.</td>
<td>• Select the symbol next to the Trends/Data... button on the main menu bar > Calculations report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Calculations report.</td>
</tr>
<tr>
<td>Case summary report</td>
<td>Prints a combination of reports configured in the Reports page of the Trends/Data dialog window (see page 177).</td>
<td>• Select the symbol next to the Trends/Data... button on the main menu bar > Case summary report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > Print case summary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > OR report > Print case summary.</td>
</tr>
<tr>
<td>OR report</td>
<td>Prints a brief summary of an anesthesia OR case including the agent and gas consumptions during the case.</td>
<td>• Select the symbol next to the Trends/Data... button on the main menu bar > OR report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select the Trends/Data... button on the main menu bar > Trends > Reports > General reports > OR report.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select the Trends/Data... button on the main menu bar > Trends > Reports > OR report > Print.</td>
</tr>
</tbody>
</table>
Reports/recordings

Configuring a case summary report

The Reports Setup page allows you to select which reports make up a case summary report. Selecting the Case summary report button prints the pre-configured reports without having to select each report manually. If no reports are pre-configured, the following reports are assigned by default to a case summary report: ECG report, Anesthesia trend report, OR report.

To setup a case summary report

1. Select the Trends/Data... button on the main menu bar.
2. Select the Reports tab (if not already selected).
3. Select the Setup tab to display the setup page to be included in the case summary report.
4. Select one or more of the following reports (the buttons of the selected reports appear dark green):

You can print a case summary report from several places, see page 447.
IT applications (options)

Overview ... 450
Configuring IT tabs 450
Web browser 450
Accessing an IT tab 451
Supported IT applications 452
Connecting to the network 453
EC 60601-1:2005 and 60601-1:2012 clause
14.13 compliance 453
Overview

The Cockpit supports several IT applications. Each application is an option that is accessible by selecting a tab appearing on the left side of the monitoring area (see “Cockpit split screen mode with multi-tab split screen” on page 62). Whenever IT tabs are displayed, the top IT tab is always labeled Patient and allows you to access the monitoring screen that displays the current patient’s vital signs.

If you are using a keyboard, you can activate a mouse cursor on the Cockpit by pressing the ALT F10 keys simultaneously.

Configuring IT tabs

Only authorized personnel with the Biomed password can configure IT tabs. In the IT setup page you can activate or deactivate each tab and configure specific settings, such as the blocking of popups and so on. For detailed information, see "Biomed IT setup" on page 425.

If the Cockpit loses communication with an application, a message appears on the corresponding IT application page. The Cockpit tries to restore the communication with the IT application as quickly as possible.

Web browser

In addition to IT applications, you can also setup a web browser with pre-configured web sites (see “Configuring IT tabs – web browser setup” on page 425). Once you access the web browser IT tab, you can choose from all of the web sites that were pre-configured under the Biomed tab. IT tabs are also available in split screen mode (see page 62).

CAUTION

The IACS does not have virus protection software and relies therefore on the farewell of your institution to prevent access to infected files. While setting up IT applications to access web sites, evaluate each web site with regard to possible virus infection.
Accessing an IT tab

The following diagram is an example of a web page. After a browser has been successfully configured (see page 426), you can select it by clicking the corresponding IT tab. Whatever IT application is displayed, the Cockpit header bar is always visible to report the patient’s vital status. The top IT tab is the Patient tab that returns you to the main screen displaying the patient’s vital signs.

A Patient tab – always returns you to the main screen with the patient’s vital signs.

B Navigate backward and forward

C Stops loading the web page

D Refreshes the screen

E Displays the home screen

F Address window

NOTE
Refreshing certain IT applications may disconnect the application and require a new login.
Supported IT applications

If you dock a new M540 and admit the patient at the Cockpit, the content of some application tabs changes to reflect the data of the new patient. Similarly, if you discharge a patient, all IT tabs reflect that the patient is discharged. The following table lists the supported IT applications.

<table>
<thead>
<tr>
<th>Name of Application</th>
<th>Supported software version</th>
<th>Description</th>
</tr>
</thead>
</table>
| Innovian Solution Suite | VF7.1 | Clinical flow sheet application.
- Innovian Critical Care
 (formerly known as ChartAssist)
- Innovian Perioperative Care
 The tab can be configured to display a single patient.
 The single patient tab requires that the M540 is docked.
 Whenever you access the Innovian tab, the local patient is displayed or the admit screen is presented if the local patient has not yet been admitted to Innovian Solution Suite application. For more information, refer to the instructions for use *Innovian Solution Suite*. |
| MegaCare | VF4 | An ECG archiving application that allows you to view, analyze, compare, edit and confirm ECG examinations. The tab can display multiple patients. |
| Infinity Symphony Suite | VF7 | An application that provides retrospective analysis of patient information stored on the ICS. The tab can be configured to run a single patient provided an M540 is docked. The Symphony status page only displays ST-deviations that are displayed in the parameter box. |
| RemoteView (Gateway PatientWatch) | VF6 or higher | Allows you to remotely view up to 4 different bedside monitors from the Cockpit.
 No wireless symbol (example: ![Wireless Symbol]) appears on the PatientWatch screen when the M540 is in wireless mode.
 PatientWatch is supported only in English. |
| Application | Citrix XenApp server Versions 5, 6 and 6.5 | Provides remote access to IT applications residing on the Citrix server. |
| HTTP Browser | Internet Explorer 7.0 | Provides access to basic HTTP content using Internet Explorer 7.0. |
Connecting to the network

Dräger provides patient monitoring, therapy, and IT products that may exchange information electronically with each other in the clinical environment, as well as other non-Dräger devices, over information-technology networks (IT networks). Each data interface is an IT network in terms of the relevant communications standard (e.g. printer interface, ISB interface, etc.).

Transmission of patient and device data across the IT network enables patient data and equipment data to be monitored, stored, transferred, printed, or shared through the use of direct wired, as well as wireless technologies, facilitating the following operations:

- Waveform and parameter data display
- Alarm notification
- Network recordings and printing
- Remote control (for example, alarm management)
- Remote BedView
- Patient archive data review (trends, events, charting information)
- Equipment setting and patient data transfer
- Service access (device and component status data; log file access)

Connecting Dräger devices to a shared IT network with other devices, or subsequent changes to the shared IT network, can lead to previously unidentified risks for patients, operators, and third parties. These risks must be identified, analyzed, evaluated, and controlled before placing the medical device into the IT network.

Subsequent changes to the IT network can include, among other things:

- IT network configuration changes
- Adding or removing additional devices to/from the IT network
- Upgrading and/or updating network equipment connected to the IT network

Hospital personnel (for example, biomedical or network engineers) should read the accompanying documents of the Dräger equipment carefully before connecting the device to an IT network. Additionally, attention should be given to the network interface description and network-relevant alarms. Installation personnel should also refer to IEC 80001-1 for guidance before connecting the Dräger equipment to IT-networks.

The following summary provides additional disclosure on the connection of Dräger medical devices to IT Networks:

- The most commonly-required configuration of the LAN-based IT-network incorporating Dräger medical devices is a star topology that connects monitoring units and groups of monitoring units (“care units”) via layered network switches and the segmentation from other IT-Network traffic via separately designated virtual LANs. Required device interface configurations are described in the respective product Instructions for Use documentation.

- The specifications of the LAN connection for Dräger medical devices to the IT-Network are outlined in the IEEE 802.3 wired and IEEE 802.11(b, g, n) wireless Ethernet standards. Port settings for layer 2 and layer 3 switches are defined on a product-specific basis. These settings are available from your DrägerService representative. Dräger provides products for initial set-up with pre-loaded IP addresses.
The LAN-based IT-network uses TCP/IP communication protocols. It must be capable of supporting either unicast (static or dynamic addressing requiring ARP or RARP), as well as multicast and broadcast transmissions. It needs to allow the use of the Internet Group Management Protocol (IGMP version 2). Dräger medical devices send out data packets on the IT network. Dräger products like CentralStation monitors, Gateways, or other bedside monitors, which are configured to receive these data packets, use the Internet Management Protocol to join or leave an IP Multicast group. An example of this data flow is bedside devices sending out their patient data using IP multicasting. A CentralStation monitor can join into each multicast channel to capture and display bedside patient data information.

Dräger devices may also require that the IT-network provides support for three dedicated, independent virtual local area network (VLAN) connections for bedside medical devices, mobile monitoring devices, and for access to the Health Delivery Organization (HDO) clinical network. Additional information can be obtained from your DrägerService representative.

Besides direct network connections, other possible communication interfaces include:

- Serial data connections, conforming to EIA RS-232 (CCITT V.24/V.28) for Medibus-based products, paging interfaces, and connections to 3rd party medical devices.
- IEEE 1073 conformant interfaces (Medical Information Bus) for connections to 3rd party medical devices (IEEE 1073.3.2 or 1073.3.1 and 1073.4.1).
- Serial data connections, conforming to USB 2.0, for human interface devices (mouse, keyboards, mass storage devices such as flash disks, CD drives, etc.).

Security for Dräger wireless products is implemented using the Advanced Encryption Standard (AES) WPA2, with pre-share key administration at the time of installation. Security for selected Dräger clinical IT products includes SSL and additional capabilities defined in the Medical Device Disclosure for Medical Device Security (MDS2) form.

There are potential hazardous situations that can result from the failure of the IT-Networks to provide the characteristics required to meet the purpose of the medical device connection to the IT Network. Dräger products will attempt to detect and mitigate these potentially hazardous situations. Related to this medical device, these situations may include:

- Untimely delivery of data (alarm annunciation/parameter values exchange/etc.), depending on a "reliable distributed alarm system or not"
- Data not sent or sent to the wrong device
- Missing data
- Patient data intercepted/corrupted
- Incorrect time stamp on data
- Alarms not detectable in time due to unsafe distributed alarm system or alarm present at network interruption
- Alarm pause/audio pause reset due to network interruption
- Data privacy lost due to missing firewall/virus protection
- Wrong equipment settings/wrong or no alarms due to missing firewall/virus protection
Problem solving

Overview .. 456
Device communication messages 456
Banners ... 458
ECG .. 461
ST .. 464
ARR ... 465
Respiration (RRI) 467
SpO2 ... 470
Non-invasive blood pressure (NIBP) 475
Temperature 478
Invasive blood pressure (IBP) 480
Cardiac Output (C.O.) 484
CO2 .. 487
Recording status messages 491
Problem solving

Overview

Alarm messages in the alarm display field are displayed in hierarchical order.

For example, if two faults are detected simultaneously, the more urgent of the two is displayed.

The priority level of the alarm messages (see page 97 for definitions) is identified by exclamation marks:

- Warning = !!! Message of high priority
- Caution = !! Message of medium priority
- Advisory = ! Message of low priority

If no priority level is assigned, the message is informational and no action is required.

In the following table, messages are listed in alphabetical order. This table identifies possible alarm causes and provides corrective action. The various causes and remedies should be worked through in the order listed until the problem has been resolved.

Device communication messages

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Disconnected from M540</td>
<td>The M540 is disconnected from the M500.</td>
<td>Dock the M540.</td>
</tr>
<tr>
<td>None</td>
<td>Duplicate IP address</td>
<td>The IP address or domain name is already in use.</td>
<td>Assign a unique IP address or domain name.</td>
</tr>
<tr>
<td></td>
<td>Duplicate address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate domain name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>External device disconnected</td>
<td>An external device is no longer communicating with the Cockpit due to a disconnected cable (hardware-related).</td>
<td>Check the external device connections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An external device is no longer communicating with the Cockpit. When this happens repeatedly in rapid succession, the Cockpit will stop monitoring the external connection (software-related). In this instance all connected devices become disconnected.</td>
<td>First check the external device connection and reconnect the cable, if necessary. If the connection is still not restored, turn the Cockpit off, and then turn it on again.</td>
</tr>
</tbody>
</table>
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Not monitored by central</td>
<td>The Cockpit is connected to the Infinity network but is not assigned to a central station. A wireless M540 is out of range of the access point.</td>
<td>Admit the patient at the central station. Return the M540 inside the range of the wireless access point. Check network connectivity.</td>
</tr>
<tr>
<td>!</td>
<td>Offline</td>
<td>The Cockpit is disconnect-ed from the Infinity network.</td>
<td>Check the network connectivity.</td>
</tr>
<tr>
<td>!!</td>
<td>please plug in power supply</td>
<td>Loss of AC power forces the Cockpit to run on battery power for at least 5 minutes before shutting down.</td>
<td>Check the power source and all connections.</td>
</tr>
<tr>
<td>!</td>
<td>Please plug in system cable</td>
<td>The system cable was disconnected from the M500.</td>
<td>Reconnect the system cable.</td>
</tr>
<tr>
<td>!!</td>
<td>Power supply overheating</td>
<td>The power supply is overheating.</td>
<td>Unplug the power supply and contact your technical personnel.</td>
</tr>
<tr>
<td>!!</td>
<td>Power supply H/W failure</td>
<td>Faulty power supply.</td>
<td>Replace the power supply and contact your technical personnel.</td>
</tr>
<tr>
<td>!!</td>
<td>Power supply low battery</td>
<td>The battery charge is < 20 %. When the battery charge falls below 10 %, the Cockpit performs a safe shutdown.</td>
<td>Reconnect to AC power.</td>
</tr>
<tr>
<td>!</td>
<td>Power supply H/W failure</td>
<td>Faulty power supply.</td>
<td>Unplug the power supply and contact your technical personnel.</td>
</tr>
<tr>
<td>None</td>
<td>Remote Relearn</td>
<td>The indicated function was initiated from the central station.</td>
<td>Informational message – no action required.</td>
</tr>
<tr>
<td>None</td>
<td>Remote Limit Change</td>
<td>The indicated function was initiated from the central station.</td>
<td>Informational message – no action required.</td>
</tr>
<tr>
<td>None</td>
<td>Silenced at Remote</td>
<td>Remote alarm silence initiated from the central station or another Cockpit.</td>
<td>Informational message – no action required.</td>
</tr>
</tbody>
</table>
Problem solving

Banners

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!!</td>
<td>All alarms off</td>
<td>The All alarms paused function is set to No timeout (see page 404) and the All alarms off button was selected.</td>
<td>Select the All alarms off button again to remove the banner.</td>
</tr>
<tr>
<td>!!!</td>
<td>All alarms paused with countdown timer</td>
<td>The All alarms paused function is set to a time (see page 404) and the All alarms paused button was selected.</td>
<td>Select the All alarms paused button again to remove the banner.</td>
</tr>
</tbody>
</table>
| !!! | ASY, VF off | This banner appears in the alarm message field under the following circumstances:
- Heart rate alarms are enabled
- HR source is set to ART or SpO2
- ARR (arrhythmia) mode is set to Off | The banner disappears under the following circumstances:
- The setting HR source is changed to ECG
- The setting ARR mode is changed to Basic or Advanced. |
| !! | Audio paused with countdown timer | The yellow Audio paused 2 min key (next to the rotary knob) was pressed. | Press the key again to remove the banner. |
| !! | Audio off | This banner appears in the alarm message field when the Audio off feature is set to On. | Activate the Audio off setting to remove the banner. |
| !!! | Bypass: All alarms off | This banner appears in the alarm message field when you activate cardiac bypass mode (see page 406). | Deactivate the feature to remove the banner. |
| None | Discharge Touch Screen to resume monitoring | This banner appears in the center of the Cockpit screen when the patient has been discharged (see page 95). | Touch the screen to resume monitoring and admit a new patient. |
| None | Filter ESU | This banner appears above the ECG waveform when the filter setting is set to ESU (see page 195). | Select another filter setting to change or remove the banner. |
| None | Filter off | This banner appears above the ECG waveform when the filter setting is set to Off (see page 195). | Activate the function to remove the banner. |
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!!</td>
<td>HR alarms off</td>
<td>This banner appears in the alarm message field under the following circumstances:</td>
<td>Activate the function to remove the banner.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- When the alarm limits for heart rate are deactivated and the ASY/VF alarms function is set to Always on (see page 406).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- When the alarm limits for heart rate are deactivated, the basic arrhythmia function is activated and the ASY/VF alarms function is set to Follow HR alarm (see page 406).</td>
<td></td>
</tr>
<tr>
<td>!!!</td>
<td>HR, ASY, VF off</td>
<td>This banner appears in the alarm message field under the following circumstances:</td>
<td>Activate the functions to remove the banner.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Heart rate alarms are deactivated,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ASY/VF alarms feature is set to Follow HR alarm (see page 406),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Arrhythmia monitoring is deactivated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The same banner also appears under the following circumstances:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Heart rate alarms are deactivated,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ASY/VF alarms feature is set to Always on (see page 406),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Arrhythmia monitoring is deactivated,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The selected HR source is activated and is either SpO2 or ART.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Pacer off</td>
<td>These banners appear above the ECG waveform when the corresponding function is activated or deactivated (see page 195)</td>
<td>Deactivate the function to remove the banner.</td>
</tr>
<tr>
<td></td>
<td>Pacer fusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Privacy</td>
<td>This banner appears in the center of the Cockpit screen when privacy mode has been activated (see page 78). All patient data are removed from the screen and are only visible at the ICS. This function is not available unless the patient is also admitted at the ICS.</td>
<td>Take the patient out of standby to view all the data at the Cockpit.</td>
</tr>
<tr>
<td>None</td>
<td>Standby</td>
<td>This banner appears in the center of the Cockpit screen when the Cockpit has been placed in standby mode.</td>
<td>Touch the screen to resume monitoring.</td>
</tr>
<tr>
<td>None</td>
<td>Waveforms stopped</td>
<td>This banner appears above all waveforms when you press the Freeze waveforms button on the main menu bar (see page 78).</td>
<td>Select the button again to remove the banner.</td>
</tr>
</tbody>
</table>
Problem solving

ECG

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!!</td>
<td>Asystole</td>
<td>ASY</td>
<td>The reported arrhythmia was detected</td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!!!</td>
<td>Bradycardia</td>
<td>BRADY</td>
<td>The reported arrhythmia was detected</td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!!</td>
<td>HR > (alarm limit)</td>
<td>Parameter value</td>
<td>The parameter value is above/below the set upper/lower alarm limits.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 out of range high</td>
<td>The parameter value is replaced by +++</td>
<td>The parameter value is above the measurement range of the monitor.</td>
<td>– Change the alarm limits.</td>
</tr>
<tr>
<td>!</td>
<td>%0 artifact</td>
<td>The parameter value is replaced by ***</td>
<td>Patient movement (shivering, tremors) – Bad electrode contact – Excessive signal noise interference from auxiliary equipment</td>
<td>– Check the electrodes and reapply if necessary. – Make sure that the patient’s skin is properly prepped. – Isolate the patient from auxiliary equipment, if possible.</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label HR or ECG.
2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>%0 Unplugged 1)</td>
<td>The parameter value is replaced by ***</td>
<td>Lead-off condition detected due to:</td>
<td>– Replace defective cable(s).</td>
</tr>
<tr>
<td></td>
<td>%0 leads off 1)</td>
<td></td>
<td>– broken cable(s)</td>
<td>– Reapply gel on reusable electrodes and reapply them or replace new disposable electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– disconnected ECG lead wires</td>
<td>– Select another ECG lead for processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– loose lead wire(s)</td>
<td>– If monitoring augmented leads, verify that the number of selected leads in the ECG setup page is correct.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– wrong lead selected</td>
<td>– Check cable(s) and connection(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– dried out electrode gel</td>
<td>– Replace cable(s) if necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECG cable(s) disconnected from the M540.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>LA lead off</td>
<td>Parameter value</td>
<td>The indicated lead is no longer attached to the patient.</td>
<td>Reattach the electrode to the patient.</td>
</tr>
<tr>
<td>None</td>
<td>LL lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>RA lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>RL lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V1 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V2 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V3 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V4 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V5 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>V6 lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V+ lead off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label HR or ECG.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!!</td>
<td>Ventricular fibrillation</td>
<td>VF</td>
<td>The reported arrhythmia was detected</td>
<td>Check the patient and treat if necessary.</td>
</tr>
</tbody>
</table>

Rest ECG messages

<table>
<thead>
<tr>
<th>None</th>
<th>ECG Collecting waveforms</th>
<th>Parameter value</th>
<th>Rest ECG was initiated</th>
<th>Instruct the patient to lie still.</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>ECG busy</td>
<td>Parameter value</td>
<td>The central station is already processing a report.</td>
<td>Wait a few minutes before requesting the report again.</td>
</tr>
</tbody>
</table>
| None | **ECG cannot connect** | Parameter value | Connection to central station is not possible. | – Check that the patient is admitted at the central station.
– Check that the central station has the Rest ECG option activated. |
| None | **ECG report complete** | Parameter value | The Rest ECG report has been printed | Informational message – no action required. |
| None | %0 comm failure ¹ | Parameter value | The external device is not available. | Check the configuration at the central station. |
| None | **Sending ECG data** | Parameter value | Informational message. | Informational message – no action required. |

¹) %0 is a placeholder for the parameter label HR or ECG.
Problem solving

ST

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Cannot analyze ST</td>
<td>The parameter value is replaced by ***</td>
<td>The algorithm cannot determine ST values due to artifact, the absence of normal beats, or invalid leads.</td>
<td>– Perform a relearn (see page 209).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Check electrodes; reapply if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Make sure the patient’s skin is properly prepared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Isolate the patient from auxiliary equipment if possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Inspect and replace defective cable(s) and wire(s).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Reapply gel on reusable electrodes and reapply them or replace new disposable electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Reapply the electrode(s). Make sure the patient’s skin is properly prepared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– If a lead or electrode cannot be replaced, select another ST lead for processing.</td>
</tr>
<tr>
<td>!!</td>
<td>ST > (alarm limit)</td>
<td>Parameter value</td>
<td>The parameter value is above/below the set upper/lower alarm limits.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td>ST < (alarm limit)</td>
<td></td>
<td></td>
<td>– Change the alarm limits.</td>
</tr>
</tbody>
</table>
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!</td>
<td>%0 out of range low 1)</td>
<td>The parameter value is replaced by - - -</td>
<td>The parameter value is below the measurement range of the monitor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check the placement of electrodes and change their position if necessary.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 out of range high 1)</td>
<td>The parameter value is replaced by +++</td>
<td>The parameter value is above the measurement range of the monitor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check the placement of electrodes and change their position if necessary.</td>
</tr>
<tr>
<td>!</td>
<td>%0 Unplugged 1)</td>
<td>The parameter value is replaced by ***</td>
<td>ECG lead wires are disconnected from the M540.</td>
<td>Check the cables and connections; replace if necessary.</td>
</tr>
<tr>
<td>None</td>
<td>ST relearn</td>
<td>The parameter value appears blank.</td>
<td>ST relearn is in progress</td>
<td>Informational message – no action required.</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label ST.

ARR

Except for asystole and ventricular fibrillation, you can assign the alarm priority low, medium or high or you can deactivate the alarm function. For asystole and ventricular fibrillation, the alarm priority is fixed as life-threatening and you cannot deactivate the alarm function.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!!</td>
<td>Asystole</td>
<td>ASY</td>
<td>The indicated arrhythmia was detected.</td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!!!</td>
<td>Ventricular fibrillation</td>
<td>VF</td>
<td></td>
<td>Some messages only appear when the Full arrhythmia option is installed.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 Run ¹)</td>
<td>RUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!!!</td>
<td>%0 Accelerated idio-ventricular rhythm ¹)</td>
<td>AIVR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 Supraventricular tachycardia ¹)</td>
<td>SVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 Couplet ¹)</td>
<td>CPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 Bigeminy ¹)</td>
<td>BGM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 tachycardia ¹)</td>
<td>TACH or VTACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 bradycardia ¹)</td>
<td>BRADY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 PAUSE ¹)</td>
<td>Pause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!!!</td>
<td>%0 artifact ¹)</td>
<td>ARTF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>ARR cannot learn</td>
<td></td>
<td>The parameter value appears blank</td>
<td>Check the electrode preparation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reapply electrodes if necessary.</td>
</tr>
<tr>
<td>None</td>
<td>%0 relearning ¹)</td>
<td>LEARN</td>
<td>The M540 is learning the patient’s QRS complex to establish a reference template.</td>
<td>Informational message – no action required.</td>
</tr>
</tbody>
</table>

In the parameter box, the value is replaced by an ARR abbreviation (see page 29) except for the ARR cannot learn message.

| !! | PVC/min > (alarm limit) | Parameter value | PVC value is above the upper alarm limit. | Check the patient and treat if necessary. |
| | | | | Reapply electrodes if necessary. |

¹) %0 is a placeholder for the parameter label ARR.
Problem solving

Respiration (RRi)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!</td>
<td>$RRi >$ (alarm limit) $RRi <$ (alarm limit)</td>
<td>Parameter value</td>
<td>The parameter value is above/below the set upper/lower alarm limits.</td>
<td>– Check the patient and treat if necessary. – Check the alarm limits.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 out of range high 1)</td>
<td>The parameter value is replaced by +++</td>
<td>– The respiration rate is higher than 150 breaths per minute. – The M540 may be counting artifacts as valid breaths. – The M540 may be counting interference caused by faulty equipment.</td>
<td>– Check the patient and treat if necessary. – Check the placement of electrodes. Change their position if necessary. – Move the electrodes away from the source of interference.</td>
</tr>
<tr>
<td>!!!</td>
<td>%0 apnea 1)</td>
<td>APNEA</td>
<td>Neonatal apnea condition was detected.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 apnea 1)</td>
<td>APNEA</td>
<td>Adult or pediatric apnea condition was detected.</td>
<td>– Check the placement of electrodes. Change their position if necessary. – Initiate a relearn or reset breath-detection sensitivity in manual mode.</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label RRi.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>%0 coincidence ¹</td>
<td>Parameter value</td>
<td>The heart rate and respiration rate fall within 20 % of each other.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Check and change the electrode placement if you receive a coincidence message until you obtain a clear respiration signal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Change the detection threshold in manual mode or initiate a relearning in auto mode.</td>
</tr>
<tr>
<td>None</td>
<td>RRi relearning</td>
<td>LEARN</td>
<td>Relearn is in progress</td>
<td>Informational message – no action required.</td>
</tr>
</tbody>
</table>

¹ %0 is a placeholder for the parameter label RRi.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>%0 lead off 1), 2)</td>
<td>The parameter value is replaced by ***</td>
<td>The respiration lead has been invalid for 10 seconds.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td>!</td>
<td>%0 artifact 1), 2)</td>
<td>The parameter value is replaced by ***</td>
<td>Persistent artifact was detected.</td>
<td>– Make sure the patient's skin is prepared properly.</td>
</tr>
<tr>
<td>!</td>
<td>RRI high impedance</td>
<td>The parameter value is replaced by ***</td>
<td>A high respiration impedance was detected.</td>
<td>– Isolate the patient from any auxiliary equipment, if possible.</td>
</tr>
<tr>
<td>!</td>
<td>%0 lead unavailable 1)</td>
<td>The parameter value is replaced by ***</td>
<td>Faulty or disconnected electrodes.</td>
<td>– Reapply gel on reusable electrodes and re-apply them or replace new disposable electrodes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Inspect and replace defective cables and wires.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– If a lead or electrode cannot be replaced, select another lead for processing (in the RRI setup page).</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label RRI.

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

SpO2

The following messages originate from three different hardware devices (Masimo SET, Masimo rainbow SET, and Nellcor OxiMax).

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (Masimo rainbow SET only)</td>
<td>Learning pulse CO-Ox</td>
<td>Learning</td>
<td>Displays parameter values for SpO2, PLS, and PI. Parameter values for SpHb (SpHbv), SpOC, SpMet, PVI, SpCO are replaced by ***</td>
<td>The parameters have been detected but have not yet been computed.</td>
</tr>
<tr>
<td>None (Masimo rainbow SET only)</td>
<td>Low %0 SIQ ¹</td>
<td>Associated parameter values are still displayed</td>
<td>– Poor signal quality</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>– Measurement reading is obscured</td>
<td>– Make sure the SpO2 sensor is attached properly to the patient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Check all cable connections.</td>
</tr>
<tr>
<td>None (Masimo rainbow SET and Masimo rainbow SET only)</td>
<td>Low SpO2 SIQ</td>
<td>Low SpO2 SIQ</td>
<td>Parameter values are still displayed.</td>
<td>The Masimo MCable detects low signal quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Make sure the SpO2 sensor is attached properly to the patient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Check all cable connections.</td>
</tr>
</tbody>
</table>

¹) %0 is a placeholder for the following parameter labels: PVI, SpHb (SpHbv), SpMet, SpOC, SpCO.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| !! | PLS out of range low | The parameter value is replaced by - - - | The parameter value is below the measurement range of the monitor. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | PLS out of range high | The parameter value is replaced by +++ | The parameter value is above the measurement range of the monitor. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | PVI > (alarm limit) | Parameter value | The parameter value is above the upper alarm limits. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | SpHb > (alarm limit)
SpHbv > (alarm limit)
SpMet > (alarm limit)
SpOC > (alarm limit) | | | |
| !! | SpO2 > (alarm limit)
PLS > (alarm limit) | Parameter value | The parameter value is above/below the set upper/lower alarm limits.
In neonatal mode, the priority changes to high (!!!) if the SpO2 value falls more than 10 % below the lower limit. This does not occur when using SatSeconds alarm time with the Nellcor OxiMax MCable. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | SpHb < (alarm limit)
SpHbv < (alarm limit)
PVI < (alarm limit)
SpOC < (alarm limit)
SpMet < (alarm limit) | | | |
| (Any SpO2 MCable) | SpO2 < (alarm limit)
PLS < (alarm limit) | | | |
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>SpO2 cable failure</td>
<td>Cable failure</td>
<td>The Masimo rainbow SET intermediate cable is defective or has expired.</td>
<td>Replace the intermediate cable.</td>
</tr>
<tr>
<td>!</td>
<td>SpO2 check sensor 2)</td>
<td>Check sensor</td>
<td>The SpO2 sensor is disconnected.</td>
<td>Make sure the SpO2 sensor is attached properly to the patient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check all cable connections.</td>
</tr>
<tr>
<td>None</td>
<td>%0 sensor calibrating 1)</td>
<td>Sensor calibrating</td>
<td>The sensor is being checked for proper functioning.</td>
<td>Wait until message disappears.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This message appears right before the message SpO2 searching.</td>
</tr>
<tr>
<td>!</td>
<td>SpO2 H/W failure</td>
<td>Parameter values are replaced by ***</td>
<td>Hardware failure</td>
<td>Check for defective MCable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact DrägerService.</td>
</tr>
<tr>
<td>!</td>
<td>SpO2 Interference Detected 2)</td>
<td>Interference detected</td>
<td>Interference such as artifact or too much ambient light was detected.</td>
<td>Make sure the sensor is properly attached.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Make sure that no nail polish or some other substance is blocking the light.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Change the sensor location.</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label SpO2.

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| None | **SpO₂ Low Perfusion** | **Low perfusion** | The signal is too small. | – Check the patient and treat if necessary.
| | | Parameter values | | – Move the sensor to a site that is more adequately perfused. |
| 1 | **SpO₂ MCable unplugged** | **MCable unplugged** | The SpO₂ MCable is disconnected from the M540. | Check connections to M540. |
| | | Parameter values are replaced by ***. The parameter values are replaced by blanks for PI or SpOC if using Masimo rainbow SET | | |
| None | **SpO₂ only mode** | **SpO₂ only mode** | The device cannot calibrate the Masimo rainbow SET parameters and is attempting to display the standard Masimo parameters. | Remove and reapply the sensor. If the problem persists, contact your technical personnel. |

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>SpO₂ searching</td>
<td>Searching</td>
<td>The sensor is searching for valid pulses to compute a measurement value.</td>
<td>Verify proper sensor application.</td>
</tr>
</tbody>
</table>
| ! | **%0 sensor failure** | Sensor failure | Parameter values are replaced by *** | – Hardware failure
 – Defective or expired SpO₂ sensor |
| ! | **SpO₂ sensor off** | Sensor off | The Masimo MCable has detected that the SpO₂ sensor is no longer attached to the patient. | Reattach the SpO₂ sensor. |
| !! | **SpO₂ sensor unplugged** | Sensor unplugged | Parameter values are replaced by *** | – SpO₂ intermediate cable or sensor is unplugged
 – SpO₂ sensor is unplugged from Masimo rainbow SET MCable |

1) %0 is a placeholder for the parameter label SpO₂.

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ! ! (Any SpO₂ MCable) | **SpO₂ unrecognized sensor** | **Unrecognized sensor** | Parameter values are replaced by *** | – An incompatible Nellcor or Masimo SET sensor is connected.
– A reusable SpHb Masimo rainbow SET sensor is connected to an Masimo rainbow SET MCable that does not support SpHb. |
| | | | | – Connect the right type of sensor.
– Contact your technical personnel. |

Non-invasive blood pressure (NIBP)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ! ! | **NIBP S** > (alarm limit)
NIBP S < (alarm limit) | Parameter value | The parameter value is above/below the upper/lower alarm limits. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| ! ! | **NIBP D** > (alarm limit)
NIBP D < (alarm limit) | Parameter value | | |
| ! ! | **NIBP M** > (alarm limit)
NIBP M < (alarm limit) | Parameter value | | |
| ! ! | %0 H/W failure | Parameter values are replaced by *** | – NIBP measurement circuit failure
– NIBP zero out of range or faulty transducer | Check all hardware, contact DrägerService. |

1) %0 is a placeholder for the parameter label NIBP.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!</td>
<td>%0 low inflation limit ¹)</td>
<td>The message Last measurement failed! is followed by the message Low inflation limit Parameter values are replaced by ***</td>
<td>The pressure of the patient is greater than the maximum allowed cuff inflation pressure.</td>
<td>Select the next higher inflation limit setting.</td>
</tr>
</tbody>
</table>
| ! | NIBP mean only | Parameter values are replaced by *** | The pulse amplitude is too small or too high for the M540 to derive systolic and diastolic pressure values but sufficient to report a mean pressure value. | – Check the patient and treat if necessary.
– Check the hose and cuff.
– Check the size and the placement of the cuff. |
| !! | %0 out of range high ¹) | Parameter value or value is replaced by *** depending on the pressure level | The parameter value is above/below the measurement range of the monitor. | Check the NIBP inflation limits and adjust them if necessary (for example, if the wrong patient category is selected). |
| !! | %0 out of range low ¹) | Parameter value or value is replaced by *** depending on the pressure level | | |
| None | NIBP pneumatic char. needed | Parameter values are replaced by *** | NIBP hardware failure in the M540. | Contact your technical personnel and take the M540 out of service. |
| ! | %0 blocked Line ¹) | The message Last measurement failed! is followed by the message Blocked line Parameter values are replaced by *** | The inflation rate is too high during the inflation cycle or the time to evacuate residual cuff pressure at the end of the deflation cycle is too short. | – Select a different cuff.
– Check the hose and cuff for damage.
– Restart the measurement. If the message does not clear, contact DrägerService. |

¹) %0 is a placeholder for the parameter label NIBP.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>%0 cannot measure 1)</td>
<td>The message \textit{Last measurement failed!} is followed by the message \textit{cannot measure}</td>
<td>Parameter values are replaced by ***</td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The pulse profile is too poor to establish a reliable measurement (usually due to persistent motion artifact)</td>
<td>Move the cuff to a limb with less movement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Restart the measurement. If the message does not clear, contact your technical personnel or DrägerService.</td>
</tr>
<tr>
<td>!</td>
<td>%0 cuff leak 1)</td>
<td>The message \textit{Last measurement failed!} is followed by the message \textit{Cuff leak}</td>
<td>Parameter values are replaced by ***</td>
<td>Check the hose and cuff for leaks. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The drop in cuff pressure at the end of the inflation cycle is too great.</td>
<td>Restart the measurement. If the message does not clear, contact DrägerService.</td>
</tr>
<tr>
<td>!</td>
<td>%0 measurement timeout 1)</td>
<td>Parameter values are replaced by ***</td>
<td>An NIBP measurement has exceeded time-out limit.</td>
<td>Repeat the measurement.</td>
</tr>
<tr>
<td>!</td>
<td>%0 overpressure 1)</td>
<td>Parameter values are replaced by ***</td>
<td>The cuff pressure has exceeded the overpressure threshold.</td>
<td>Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check the cuff for obstructions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repeat the measurement.</td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the parameter label NIBP.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%0 open line ¹)</td>
<td>The message Last measurement failed! is followed by the message Open line Parameter values are replaced by ***</td>
<td>There was no significant increase in cuff pressure during the inflation cycle.</td>
<td>Make sure that the hose and cuff are properly connected to the monitor.</td>
</tr>
<tr>
<td>None</td>
<td>Venous stasis started</td>
<td>Parameter value or blank value</td>
<td>Message reporting the status of venous stasis.</td>
<td>Informational message – no action required.</td>
</tr>
<tr>
<td>None</td>
<td>Venous stasis ending</td>
<td>Parameter value or blank value</td>
<td>Message reporting the status of venous stasis.</td>
<td>Informational message – no action required.</td>
</tr>
<tr>
<td>None</td>
<td>Venous stasis ended</td>
<td>Parameter value or blank value</td>
<td>Message reporting the status of venous stasis.</td>
<td>Informational message – no action required.</td>
</tr>
</tbody>
</table>

¹) %0 is a placeholder for the parameter label NIBP.

Temperature

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!</td>
<td>T_{1a} > (alarm limit)</td>
<td>Parameter value</td>
<td>The parameter value is above/below the upper/lower alarm limits.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td>T_{1b} > (alarm limit)</td>
<td></td>
<td></td>
<td>– Change the alarm limits.</td>
</tr>
<tr>
<td></td>
<td>T_a > (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_b > (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T > (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔT > (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔT_1 > (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_{1a} < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_{1b} < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_a < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_b < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔT < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔT_1 < (alarm limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>Message</td>
<td>Parameter box</td>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>!!</td>
<td>%0 out of range high ¹)</td>
<td>The parameter value is replaced by +++</td>
<td>The parameter value is above/below the measurement</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>range of the monitor.</td>
<td>– Check the equipment and replace, if necessary.</td>
</tr>
<tr>
<td>!!</td>
<td>%0 out of range low ¹)</td>
<td>The parameter value is replaced by - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>Cannot derive %0 ²)</td>
<td>The parameter value is replaced by ***</td>
<td>The cable is either defective or unplugged.</td>
<td>– Check the equipment and replace it if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Connect the second temperature sensor.</td>
</tr>
<tr>
<td>!</td>
<td>%0 H/W failure ¹), ²)</td>
<td>The parameter value is replaced by ***</td>
<td>The hardware reference values do not meet the</td>
<td>Contact DrägerService.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>specified tolerance.</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>%0 Unplugged ¹), ²)</td>
<td>The parameter value is replaced by ***</td>
<td>The temperature sensor is unplugged.</td>
<td>Reapply the temperature sensor.</td>
</tr>
</tbody>
</table>

¹) %0 is a placeholder for the parameter label T for Temp.

²) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Invasive blood pressure (IBP)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| !!! | ART cath. disconnected? | The parameter value is replaced by *** | The arterial catheter could be dislodged, or there could be a leak in the tubing. | – Assess the catheter insertion site.
– Inspect the tubing for leaks or the presence of blood.
– Check the patient and treat, if necessary. |
| !! | %0 transducer failure 1) | IBP transducer hardware failure. | – Check the transducer and replace, if necessary. |
| !! | IBP label > (alarm limit)
IBP label < (alarm limit) | Parameter value | The parameter value is above/below the upper/lower alarm limits. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | CPP > (alarm limit)
CPP < (alarm limit) | Parameter value | The parameter value is above/below the upper/lower alarm limits. | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | %0 out of range low 1) | The parameter value is replaced by - - - | The parameter falls outside the pressure range of the monitor. | – Check the patient and treat if necessary.
– Check the equipment and replace, if necessary. |
| !! | %0 out of range high 1) | The parameter value is replaced by +++ | | |
| ! | %0 please check zero 1) | Parameter value | The IBP zero value stored in the M540 was lost and the transducer requires zeroing. | Zero the transducer. |

1) %0 is a placeholder for the respective IBP label (including CPP).
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ! | %0 🌐 H/W failure ¹) | The parameter value is replaced by *** | IBP hardware failure. | – Check hardware and replace if necessary.
– Call your technical personnel or contact DrägerService. |
| None | %0 did not zero ¹) | Parameter value | Transducer zeroing failed because of:
– excessive signal noise
– a non-static waveform | – Keep all tubing motionless, then rezero.
– Change the transducer.
– Check stopcock, then rezero. |
| !! | %0 static pressure ¹) | Parameter value | Static pressure detected on a pulsatile signal, due to:
– a physiological condition such as an asystole
– a transducer that is closed to the patient
– a catheter tip that is lodged against a vessel wall
– a clot on the catheter tip | – Check the patient and treat if necessary.
– Open the system to the patient by turning the stopcock.
– Follow hospital procedures for dislodging catheters.
– Follow hospital procedures for clotted catheters. |

¹) %0 is a placeholder for the respective IBP label (including CPP).
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ! | %0 Unplugged 1), 2) | The parameter value is replaced by *** | The pressure transducer for the specified parameter is either unplugged or defective. | – During an active pressure: Reconnect or replace the cable.
– During an inactive pressure: deactivate alarms. |
| ! | **HemoPod unplugged** 2) | The parameter value is replaced by *** | The IBP pod is disconnected. | Check the equipment and replace if necessary. |
| None | %0 zero accepted 1) | Parameter value | Transducer zeroing was successful. | Informational message – no action required. |
| None | %0 did not zero - offset error 1) | Parameter value | Transducer zeroing failed because static pressure was too high or too low. | – Keep all tubing motionless.
– Replace the transducer.
– Check the stopcock and zero again. |
| None | **Inflate balloon. Press “Wedge” to Start.** | Parameter value | Action required to start wedge measurement. | Press **Start wedge** button to begin wedge measurement. |
| None | **Wedge in progress** | Parameter value | Informational message. | Informational message – no action required. |

1) %0 is a placeholder for the respective IBP label (including CPP).

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Deflate balloon and press "Save wedge" to finish</td>
<td>Parameter value</td>
<td>Action required to complete wedge measurement.</td>
<td>Press Save wedge button to finish wedge measurement.</td>
</tr>
<tr>
<td></td>
<td>This message appears in the Wedge dialog only.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) %0 is a placeholder for the respective IBP label (including CPP).
Cardiac Output (C.O.)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| !! | T\text{blood} > (alarm limit)
T\text{blood} < (alarm limit) | Parameter value | The blood temperature is outside the alarm limits because of:
- a physiological condition
- inappropriate alarm limits
- a defective sensor | – Check the patient and treat if necessary.
– Change the alarm limits. |
| !! | %0 out of range high 1)
%0 out of range low 1) | Parameter value | The blood temperature is outside the measurement range because of a defective sensor. | Check equipment and replace if necessary. |
| ! | C.O. Catheter Fault - Bad Ref. 2) | Parameter value | The C.O. blood thermistor calibration resistor does not meet the specified tolerance. | – Check the catheter and replace if necessary.
– Contact your technical personnel or DrägerService. |
| ! | C.O. Pod Fault - Bad Ref. 2) | Parameter value | The C.O. reference values do not meet the specified tolerances. | – Remove and reconnect the pod.
– Repeat the measurement.
– Replace the pod and contact DrägerService if the message persists. |

1) %0 is a placeholder for the parameter label C.O.
2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| None | %0 out of range high ¹ | Parameter value | The C.O. is greater than 20 liters/min or less than 0.5 liters/min because of:
- a physiological condition
- unstable baseline
- incorrect injectate volume, catheter size, or computation constant
- defective catheter, cable, or cartridge | – Check the patient and treat if necessary.
– Use cooler injectate.
– Enter the correct values in the C.O. page.
– Repeat the measurement. If message persists, replace defective components. |
| None | %0 Check Injectate Probe | Parameter value | The injectate probe is not connected or became disconnected during a measurement. | Connect the probe and repeat the measurement. |
| None | %0 duplicate device connected ¹ | Parameter value | Multiple C.O. sources are connected. This includes CCO devices connected via the device connectivity option. | Disconnect duplicate C.O. sources. |
| None | %0 Injectate Too Cold ¹ | Parameter value | The injectate temperature is too cold during the measurement process. | – Use an injectate within the correct temperature range of –5 °C to +30 °C (–23 °F to +86 °F).
– Check equipment and replace if necessary. |

¹%0 is a placeholder for the parameter label C.O.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>C.O. injectate set to 20°C!</td>
<td>Parameter value</td>
<td>No injectate probe was connected. The M540 assumes a temperature of 20 °C (68 °F).</td>
<td>Attach an injectate probe.</td>
</tr>
</tbody>
</table>
| None | %0 No Temperature Change ¹) | Parameter value | No change in blood temperature during the C.O. measurement. | – Repeat the measurement.
– Use a larger injectate volume.
– Repeat the measurement. If problem persists, replace the catheter.
– Use a cooler injectate. |
| None | %0 Poor Baseline ¹) | Parameter value | Poor blood temperature baseline during C.O. measurement. | – Follow hospital procedures.
– Repeat the measurement.
– Replace the defective components, if the message persists. |
| None | %0 Use Cooler Injectate ¹) | Parameter value | – The difference between the temperature of the blood and the injectate is less than 5 °C (41 °F).
– The injectate temperature is greater than 25 °C (77 °F). | Use a colder injectate. |

¹) %0 is a placeholder for the parameter label C.O.
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>%0 Transducer Unplugged ¹), ²)</td>
<td></td>
<td>A cable or transducer has become disconnected.</td>
<td>– Reconnect the cable or transducer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Replace the defective part, if the message persists.</td>
</tr>
</tbody>
</table>

¹) %0 is a placeholder for the parameter label C.O.

²) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.

CO₂

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>!!</td>
<td>CO₂ > (alarm limit)</td>
<td>Parameter value</td>
<td>The parameter value is above/below the upper/lower alarm limits.</td>
<td>– Check the patient and treat if necessary.</td>
</tr>
<tr>
<td></td>
<td>CO₂ < (alarm limit)</td>
<td></td>
<td></td>
<td>– Change the alarm limits.</td>
</tr>
<tr>
<td>None</td>
<td>CO₂ please zero</td>
<td>Parameter value</td>
<td>Instructional message for the mainstream sensor only</td>
<td>Zero the mainstream sensor.</td>
</tr>
<tr>
<td>!</td>
<td>CO₂ sensor too warm</td>
<td>The parameter value is replaced by ***</td>
<td>The CO₂ mainstream sensor is too warm due to ambient temperature.</td>
<td>– Unspecified accuracy at ambient temperatures above 40 °C (104 °F).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– The sensor will return to normal operation at ambient temperatures below 40 °C (104 °F). If not, replace the sensor and contact DrägerService.</td>
</tr>
</tbody>
</table>
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| None | CO2 warming up | Parameter value or blank parameter value | The mainstream sensor is going through the warm-up cycle. | – Wait for the mainstream sensor to warm up. During warm-up, the accuracy is reduced.
– If the message persists longer than 15 min after the sensor has warmed up, and the ambient temperature is above 10 °C, contact DrägerService.
You cannot zero the sensor when this message is displayed and the ambient temperature is above 10 °C (50 °F).
When the ambient temperature is below 10 °C (50 °F), the message can persist longer than 15 minutes. In this case, it is possible to zero the sensor after the message has been displayed for at least 10 minutes. |
| ! | %0 H/W failure | The parameter value is replaced by *** | CO2 sensor hardware failure. | Contact your technical personnel. |

1) %0 is a placeholder for the parameter label CO2

488 Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| !! | %0 out of range ¹) | The parameter value is replaced by *** | The parameter signal is outside the measuring range of the monitor. | – Check the patient and treat if necessary.
– Check the equipment and replace if necessary. |
| ! | %0 incompatible sensor ¹) | The parameter value is replaced by *** | – The M540 has detected that the used mainstream sensor is not compatible with the selected sensor type setting (reusable/disposable)
– Secretions in the adapter
– Sensor zero drift
– High inspiratory CO₂ concentration | – Use the airway adapter type the system is configured for or adjust the airway adapter setting (see page 419).
– If the message persists, clean or replace the airway adapter.
– If the message persists even though the correct airway adapter type is selected and the airway adapter is clean, zero the sensor.
– If the message still persists, the inspiratory CO₂ value might not be accurate. Check the patient and ventilation. |

¹) %0 is a placeholder for the parameter label CO₂
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Parameter box</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ! | %0 check airway adapter 1) | The parameter value is replaced by *** | – The mainstream sensor is not properly seated on the adapter
– There are secretions in the adapter.
– There is sensor zero drift | – Make sure the mainstream sensor is attached properly to the adapter.
– If message persists, clean or replace the airway adapter.
– If message persists though the airway adapter is clean, zero the sensor. |
| ! | %0 Unplugged 2) | The parameter value is replaced by *** | The CO2 sensor is disconnected. | Check the CO2 connections. |
| None | %0 zero in progress 1) | The parameter value appears blank | The CO2 zeroing is in progress | Informational message – no action required. |
| None | %0 Zero failed 1) | The parameter value is replaced by *** | Zeroing of the sensor has failed or the sensor is defective. | – Try to zero the sensor again making sure not to breathe on the sensor.
– If zeroing fails again, replace the sensor and contact DrägerService, if the message persists. |

1) %0 is a placeholder for the parameter label CO2.

2) After discharging a patient or starting the device, the alarm becomes active only after a numeric value has been received for that parameter.
Problem solving

Recording status messages

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Primary recorder not connected or Secondary recorder not connected</td>
<td>A recording was requested but no recorder is available.</td>
<td>Try again, then contact your technical personnel.</td>
</tr>
<tr>
<td>None</td>
<td>Primary recorder out of paper or Secondary recorder out of paper</td>
<td>A recording was requested but the recorder is out of paper.</td>
<td>Replace the recorder paper (see page 440).</td>
</tr>
<tr>
<td>None</td>
<td>Primary recorder door open or Secondary recorder door open</td>
<td>The recorder door is open.</td>
<td>Close the door of the recorder.</td>
</tr>
<tr>
<td>None</td>
<td>Primary recorder failure or Secondary recorder failure</td>
<td>The recording request was not accepted due to recorder hardware failure.</td>
<td>Contact your technical personnel.</td>
</tr>
<tr>
<td>None</td>
<td>Primary recorder not assigned or Secondary recorder not assigned</td>
<td>No recorder has been assigned.</td>
<td>Contact your technical personnel.</td>
</tr>
<tr>
<td>None</td>
<td>Primary recorder overheating or Secondary recorder overheating</td>
<td>The recorder is overheating.</td>
<td>Contact your technical personnel.</td>
</tr>
</tbody>
</table>
Problem solving

<table>
<thead>
<tr>
<th>Priority</th>
<th>Message</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Timed recording started or Continuous recording started</td>
<td>The requested recording is being printed.</td>
<td>Informational message – no action required.</td>
</tr>
<tr>
<td>None</td>
<td>Timed recording request accepted or Continuous recording request accepted</td>
<td>The recorder is not available and the requested recording is queued or stored for later printing.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Timed recording finished or Timed recording canceled</td>
<td>The requested recording is printed.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Continuous recording canceled</td>
<td>The requested recording was manually canceled.</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Recording not accepted</td>
<td>The assigned recorder is not available and the recording request was ignored.</td>
<td>Contact your technical personnel to check the recorder assignment.</td>
</tr>
<tr>
<td>None</td>
<td>Excess artifact recording canceled</td>
<td>The recording request was not accepted due to artifact.</td>
<td>Check the ECG lead connections; contact your technical personnel.</td>
</tr>
</tbody>
</table>
Cleaning and disinfection

General precautions 494
Approved agents 495
PS250/P2500 Cleaning 495
Cleaning and disinfection

General precautions

Clean and disinfect the device or device parts before each maintenance step – and also when returning for repair.

The cleaning agents and methods listed on page 495 are approved for the PS250 / P2500.

Before cleaning any device, read the general safety precautions under "General safety information" on page 16.

WARNING
Because of the danger of electric shock, never remove the cover of any device while it is in operation or connected to power.

WARNING
Do not immerse or rinse the device and its peripherals. If you spill liquid on the device (including the battery or accessories), or accidentally immerse it in liquid, disconnect the device from the power source and allow it to dry completely for at least 24 to 48 hours. Contact your technical personnel regarding the continued safety of the device and its peripherals before placing it back in operation.

CAUTION
To avoid damaging the device, do not use sharp tools or abrasives. Never immerse electrical connectors in water or other liquids.

Refer to the following instructions for use for the following devices:

For cleaning instructions regarding the M540 and devices that connect to it, refer to the instructions for use Infinity Acute Care System – Infinity M540.

For cleaning instructions regarding cockpits, refer to the Infinity Acute Care System Instructions for Use - Infinity Medical Cockpits.
Cleaning and disinfection

Approved agents

Clean and disinfect the product per hospital approved protocol. Agents tested by Dräger and shown to have no harmful effect at the time of testing include:

- Isopropyl alcohol (40 % solution)
- Compliance – (7.35 % hydrogen peroxide, 0.23 % peracetic acid, 92.42 % inert ingredients)
- Sporox II – (7.5 % hydrogen peroxide, 0.85 % phosphoric acid, and 91.65 % inert ingredients)
- Dismozon® pur
- mild soapy water solution (only for cleaning)

CAUTION
If using alcohol, use a 40% diluted solution only. Higher concentrations could damage the device.

CAUTION
The use of cleaning agents or concentrations of agents other than those listed, may damage the device and will void warranty.

PS250/P2500 Cleaning

Refer to information provided by the manufacturer of the cleaning solution for more information in these areas.

To clean the PS250/ P2500:

1. Wipe the housing with a cloth moistened with a soapy water solution.
2. Dry thoroughly with a lint-free cloth.
3. Disinfect housing by wiping with a cloth moistened with approved agents.
This page intentionally left blank.
Maintenance

Overview .. 498
Definition of maintenance concepts 499

Inspection 499

Visual inspection 499

Inspection / safety checks 500
Scope of inspection/safety checks for the
Cockpit (C500/C700) 500
Scope of inspection/safety checks for the
PS250 / P2500 500
Scope of inspection/safety checks for the
M540. .. 501
Metrological checks 501

Preventive maintenance 502
Overview

This chapter describes the maintenance measures required to maintain the proper functioning of the medical device. Maintenance measures must be performed by the responsible personnel.

WARNING
Risk of infection.
Users and service personnel can become infected with pathogenic germs.
Disinfect and clean the device or the device parts before any maintenance measures and also before returning the medical device for repair.

WARNING
Risk of electric shock.
Current-carrying components are located under the cover.
- Do not remove the cover.
- Maintenance measures must be performed by the responsible personnel. Dräger recommends DrägerService to perform these measures.

WARNING
If the device is mechanically damaged, or if it is not working properly, do not use it. Contact your hospital’s technical personnel.

CAUTION
This device must be inspected and serviced at regular intervals. A record must be kept on this preventive maintenance. We recommend obtaining a service contract with DrägerService through your vendor. For repairs we recommend that you contact DrägerService.

CAUTION
When servicing devices from Dräger, always use replacement parts that are qualified to Dräger standards. Dräger cannot warrant or endorse the safe performance of third-party replacement parts for use with the devices.

CAUTION
If you spill liquid on the equipment, battery or accessories or immerse these components in liquid, allow them to dry completely for at least 24 hours to 48 hours. Contact your hospital’s technical personnel to test any such component is fully operational before putting it back in clinical use.

NOTE
Only perform maintenance measures when no patient is connected to the device.
Definition of maintenance concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>All measures (inspection, preventive maintenance, repair) intended to main-</td>
</tr>
<tr>
<td></td>
<td>tain and restore the functional condition of a medical device.</td>
</tr>
<tr>
<td>Inspection</td>
<td>Measures intended to determine and assess the actual state of a medical de-</td>
</tr>
<tr>
<td></td>
<td>vice.</td>
</tr>
<tr>
<td>Preventive maintenance</td>
<td>Recurrent specified measures intended to maintain the functional condition</td>
</tr>
<tr>
<td></td>
<td>of a medical device.</td>
</tr>
<tr>
<td>Repair</td>
<td>Measures intended to restore the functional condition of a medical device</td>
</tr>
<tr>
<td></td>
<td>after a device malfunction.</td>
</tr>
</tbody>
</table>

Inspection

Perform inspections at regular intervals and observe the following specifications.

<table>
<thead>
<tr>
<th>Checks</th>
<th>Interval</th>
<th>Personnel responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection/safety checks</td>
<td>Every 2 years</td>
<td>Expert</td>
</tr>
<tr>
<td>Metrological checks</td>
<td>Every 2 years</td>
<td>Expert</td>
</tr>
</tbody>
</table>

Visual inspection

Perform a visual inspection before every use and in accordance with your hospital’s policy.

1. Make sure that the housing is not cracked or broken and there are no signs of spilled liquids or damage.

2. Inspect all accessories (for example, sensors and cables). Do not use if there are any signs of damage.

3. Turn the monitor on and make sure the backlight is bright enough.

4. Examine all system cables, power plugs and discontinue use if there are any signs of damage.

5. Inspect all patient cables, leads and strain reliefs for general condition. Make sure the connectors are properly engaged at each end.
Maintenance

Inspection / safety checks

Inspection and safety checks of devices must be performed according to the suggested intervals specified in the table on page 499.

Scope of inspection/safety checks for the Cockpit (C500/C700)

The safety checks are no substitute for preventive maintenance measures (including preventive replacement of wear parts) as identified by the manufacturer.

1 Check accompanying documents:
 – Instructions for use are available

2 Perform a functional test of the following features according to the instructions for use:
 – Verify the LEDs
 – Perform device checks

3 Check that the device combination is in good condition:
 – All labels are complete and legible
 – There is no visible damage
 – Fuses which are accessible from the outside are in compliance with the specified values

4 Use the instructions for use to check that all components and accessories needed to use the product are available.

5 Check the electrical safety requirements according to IEC62353.

6 Verify that the visual and acoustic alarm signals function properly.

Scope of inspection/safety checks for the PS250 / P2500

The safety checks are no substitute for preventive measures (including preventive replacement of wear parts) as identified by the manufacturer.

1 Check accompanying documents:
 – Instructions for use are available

2 Perform a functional test of the following features:
 – Verify the LEDs
 – Perform device checks

3 Check that the device combination is in good condition:
 – All labels are complete and legible.
 – There is no visible damage.
 – Fuses which are accessible from the outside comply with the specified values.

4 Check the electrical safety requirements according to IEC62353 every two years by qualified DrägerService personnel.

5 Check the following safety features:
 – The power LED and the battery indicator LED function properly.
 – The C500/C700 are powered correctly.
 – Check the correct functioning of the Infinity MCable – Nurse call.

WARNING
Risk of medical device failure
If safety checks are not performed on a regular basis, the proper operation of the medical device can be compromised.

Perform safety checks at the indicated intervals.
Scope of inspection/safety checks for the M540

The safety checks are no substitute for preventive maintenance measures (including preventive replacement of wear parts) as identified by the manufacturer.

WARNING

Risk of medical device failure

If safety checks are not performed on a regular basis, the proper operation of the medical device can be compromised.

Perform safety checks at the indicated intervals.

1. Check accompanying documents:
 - Instructions for use are available

2. Perform a functional test of the following features according to the instructions for use:
 - Verify the LEDs
 - Perform device checks
 - Perform a functional test of the internal battery
 - Perform device checks (for example, communication with the IACS, front panel buttons, alarm bar, and correct functioning of monitored parameters).

3. Check that the device combination is in good condition:
 - All labels are complete and legible
 - There is no visible damage
 - Fuses which are accessible from the outside are in compliance with the specified values

4. Check the electrical safety requirements according to IEC62353 every two years by qualified DrägerService personnel.

5. Check the following safety features:
 - The power LED and the battery indicator LED function properly.
 - The C500/C700 are powered correctly.
 - Check the battery every two years. If necessary, trained personnel must replace it.
 - Check the correct functioning of the Infinity MCable – Nurse call.
 - Correct functioning of the \(\text{\textbullet} \) button located on the front panel of the device.
 - Correct functioning of the non-invasive blood pressure overpressure sensor (including the valves and the pump).
 - Correct functioning of the visual and acoustic alarm signals.

6. Check the battery every two years and make sure the M540 runs on battery power without fail for one minute as follows:
 - Undock the M540 from the M500
 - Turn on the M540
 - Wait for one minute and observe the M540.

If the battery fails, trained personnel must replace it.

Metrological checks

If required by applicable regulations, the following measurement functions must be checked every two years by qualified DrägerService personnel:

- Body temperature
- Non-invasive blood pressure
Preventive maintenance

WARNING

Risk of faulty components

Device failure is possible due to wear or material fatigue of the components.

WARNING

Risk of electric shock

Before performing any maintenance work, disconnect all electrical connectors from the power supply.

To maintain proper operation of all components, this device must undergo inspection and preventive maintenance at specified intervals.

The following table shows the preventive maintenance intervals:

<table>
<thead>
<tr>
<th>Component</th>
<th>Interval</th>
<th>Measure</th>
<th>Personnel responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two non-invasive blood pressure air intake filters of the M540</td>
<td>Every two years</td>
<td>Replace</td>
<td>Expert</td>
</tr>
<tr>
<td>If the non-invasive blood pressure air filter seems dirty or damaged, replace it before the recommended two years. The air filter should be replaced, if the M540 was exposed to liquid. See "Exchanging the ambient air filter" in the Technical documentation which is available from DrägerService.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal M540 battery</td>
<td>Every two years</td>
<td>Check</td>
<td>Hospital personnel</td>
</tr>
<tr>
<td>For devices that have high transport or battery use, the battery must be checked more often.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal PS250 / P2500 battery</td>
<td>Every two years</td>
<td>Replace</td>
<td>Expert</td>
</tr>
</tbody>
</table>

NOTE

For devices that have high transport or battery use, the battery must be checked more often.

NOTE

Do not disassemble the Ni-MH battery inside the PS250 / P2500. Aside from the required two-year maintenance recommended for the entire IACS, this battery requires no additional routine maintenance.
Disposal

EU Directive 2002/96/EC (WEEE) 503

EU Directive 2002/96/EC (WEEE)

This device is subject to EU Directive 2002/96/EC (WEEE). In order to comply with its registration according to this directive, this device may not be disposed of at municipal collection points for waste electrical and electronic equipment. Dräger has authorized a company to collect and dispose of this device.

To initiate collection or for further information, visit Dräger on the Internet at www.draeger.com. Use the Search function with the keyword "WEEE" to find the relevant information. If access to Dräger's website is not possible, contact the local Dräger organization.
This page intentionally left blank.
Technical data

Overview ... 506
Infinity PS250 power supply 506
Infinity P2500 508
Infinity MCable – Nurse call 510
Infinity R50N 511
Sound pressure 512
Secondary display 512
Electromagnetic compatibility 512
Technical data

Overview

This chapter contains the technical data for the following devices of the Infinity Acute Care System – Monitoring applications:

- PS250 power supply
- P2500 power supply
- Minimal technical requirements for the secondary display
- Infinity MCable – Nurse call

For technical data of the Infinity C500/C700 refer to instructions for use Infinity Acute Care System – Infinity M540.

For the following information, refer to the instructions for use Infinity Acute Care System – Infinity M540:

- Infinity M500 docking station
- MPod and MCable devices that connect directly to the M540
- Specifications such as measuring ranges of individual parameters

The IACS is intended to be connected to one patient at a time.

Infinity PS250 power supply

<table>
<thead>
<tr>
<th>Physical specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (W x D x H)</td>
<td>27.76 x 11.68 x 34.59 cm (10.93 x 4.60 x 13.62 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>5.5 kg (12 lbs)</td>
</tr>
<tr>
<td>Cooling</td>
<td>Convection</td>
</tr>
<tr>
<td>Connections</td>
<td>AC power</td>
</tr>
<tr>
<td></td>
<td>RS232</td>
</tr>
<tr>
<td></td>
<td>Alarm output</td>
</tr>
<tr>
<td></td>
<td>System cable</td>
</tr>
<tr>
<td></td>
<td>Infinity network (Ethernet)</td>
</tr>
<tr>
<td></td>
<td>Potential equalization connector (grounding lug)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity (non-condensing)</td>
<td>Operating: 20 to 95 %</td>
</tr>
<tr>
<td></td>
<td>Storage/Transport: 20 to 95 %</td>
</tr>
</tbody>
</table>
Temperature

<table>
<thead>
<tr>
<th>Operating</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 40 °C (32 to 104 °F)</td>
<td>-20 to +60 °C (-4 to +140 °F)</td>
</tr>
</tbody>
</table>

The PS250 has an operating temperature range of 0 to 40 °C (32 to 104 °F). When the battery is being charged at ambient temperatures below 5 °C (41 °F), the yellow LED on the PS250 may light up.

Atmospheric pressure

<table>
<thead>
<tr>
<th>Operating</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>485 to 795 mmHg (70 to 106 kPa)</td>
<td>375 to 795 mmHg (50 to 106 kPa)</td>
</tr>
</tbody>
</table>

Protection against ingress of water

IPX1 according to IEC 60529 – protected against harmful effects of dripping water when mounted vertically with the connectors facing down.

Electrical specifications

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>Mode of operation</th>
<th>Batteries</th>
<th>Operating time</th>
<th>Recharging time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 240 VAC (50/60 Hz, 6 A)</td>
<td>Continuous</td>
<td>Dräger NiMH battery pack</td>
<td>approximately 5 min</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

DC output: +24 V nominal, SELV according to IEC 60601-1
Technical data

Infinity P2500

<table>
<thead>
<tr>
<th>Physical specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (W x D x H)</td>
<td>218 mm x 150 mm x 348 mm (8.6 in x 5.9 in x 13.7 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>10 kg (22 lbs)</td>
</tr>
<tr>
<td>Cooling</td>
<td>Natural convection (no cooling fan)</td>
</tr>
<tr>
<td>Connections</td>
<td>– Nurse call system</td>
</tr>
<tr>
<td></td>
<td>– System cable (quantity of 2)</td>
</tr>
<tr>
<td></td>
<td>– Ethernet (quantity of 2)</td>
</tr>
<tr>
<td></td>
<td>– RS232 (modular jack)</td>
</tr>
<tr>
<td></td>
<td>– Potential equalization connector (grounding lug) optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity (non-condensing)</td>
<td>Operating: 20 % to 95 %</td>
</tr>
<tr>
<td></td>
<td>Storage/Transport: 5 % to 95 %</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating: 0 °C to 40 °C (0 °F to 104 °F)</td>
</tr>
<tr>
<td></td>
<td>Storage: −20 °C to 60 °C (−4 °F to 140 °F)</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>Operating: 647 hPa to 1060 hPa</td>
</tr>
<tr>
<td></td>
<td>Storage: 500 hPa to 1060 hPa</td>
</tr>
<tr>
<td>Protection against ingress of water</td>
<td>IPX1 according to IEC 60529 – protected against harmful effects of dripping water when mounted vertically with the connectors facing down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>100 to 240 VAC 50 to 60 Hz</td>
</tr>
<tr>
<td>Input current</td>
<td>3 A @ 100 VAC and 1.3 A @ 240 VAC maximum</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Continuous</td>
</tr>
<tr>
<td>Batteries</td>
<td>Rechargeable lead acid batteries</td>
</tr>
<tr>
<td></td>
<td>Operating time: approximately 5 minutes @ 250 W</td>
</tr>
<tr>
<td></td>
<td>Recharging time: maximum 12 hours</td>
</tr>
<tr>
<td>DC output</td>
<td>250 W (TOTAL of two system cable output)</td>
</tr>
<tr>
<td></td>
<td>+28 VDC (when powered by AC mains supply)</td>
</tr>
<tr>
<td></td>
<td>+24 VDC (when powered by fully charged batteries)</td>
</tr>
<tr>
<td></td>
<td>SELV according to IEC60601-1.</td>
</tr>
</tbody>
</table>
Technical data

| LEDs | – Green LED (device is connected to AC power).
| | – Yellow LED (briefly during startup
| | – The battery/charging failure indicator lights up yellow under the following circumstances:
| | – Battery failure (battery depleted, battery not connected, battery fault), or
| | – Battery charging error, or battery temperature issue
| | The Cockpit LEDs on the front panel light up for a few seconds when the Infinity P2500 is connected to AC mains after it has been disconnected for a period of time to indicate that the LED is working properly. |
| Automatic shutdown | – Overload limit (the device shuts down)
| | – Power overload: exceed 285 W (at system connector)
| | – Current overload: exceed 14 A (short circuit protected)
| | – Output voltage: exceed 32V
| | – Temperature:
| | – internal temperature exceeds 75°C (167 °F)
	– battery temperature exceeds 50 °C (122°F) when battery is in charging status after 1 minute.
Electrical protection	Class 1
Inrush current	37 A
Technical data

Infinity MCable – Nurse call

<table>
<thead>
<tr>
<th>Physical attributes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>Connects to the PS250 / P2500 Connection via cable 8417370 only</td>
</tr>
<tr>
<td>Cable signals during non-alarm state</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable 1 (NO normally open): white</td>
<td>1</td>
</tr>
<tr>
<td>Cable 2 (COM common): brown</td>
<td>2</td>
</tr>
<tr>
<td>Cable 3 (NC normally closed): green</td>
<td>3</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Power requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>24 V DC maximum</td>
</tr>
<tr>
<td>Input current</td>
<td>1 A DC maximum</td>
</tr>
<tr>
<td>Switching capacity</td>
<td>15 W maximum</td>
</tr>
<tr>
<td>Protection against electric shock</td>
<td>Three contacts from the open cable have an electrical isolation of 1.5 k VAC</td>
</tr>
</tbody>
</table>

Environmental requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>5 to 55 °C (41 to 131 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5 to 95 %, non-condensing</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>375 to 825 mmHg (50 to 110 kPa)</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td>−20 to +60 °C (−4 °F to +140 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5 to 95 %, non-condensing</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>375 to 825 mmHg (50 to 110 kPa)</td>
</tr>
</tbody>
</table>
Infinity R50N

<table>
<thead>
<tr>
<th>Physical attributes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (H x W x D)</td>
<td>180 x 120 x 222 mm (7.1 x 4.7 x 8.7 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.6 kg (3.6 lbs)</td>
</tr>
<tr>
<td>Connections</td>
<td>AC power</td>
</tr>
<tr>
<td></td>
<td>X14 Infinity network connector</td>
</tr>
<tr>
<td></td>
<td>Potential equalization connector (grounding lug)</td>
</tr>
<tr>
<td>Cooling</td>
<td>Convection</td>
</tr>
</tbody>
</table>

Power requirements

| Input voltage | 100 to 240 VAC (50/60 Hz, 1 A) |

Risk management

Protection class	Class 1
Protection against liquid ingress	IPX0 according to IEC 60529.
Mode of operation	Continuous

Environmental requirements

<table>
<thead>
<tr>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Temperature range</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
</tr>
</tbody>
</table>
Technical data

Sound pressure

Sound pressure levels for IEC alarm tones
Measurements per ISO 3744, 5 to 100% volume setting

<table>
<thead>
<tr>
<th>Device</th>
<th>Low grade</th>
<th>Medium grade</th>
<th>High grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>C500 (1st generation)</td>
<td>50 dB(A) to 68 dB(A)</td>
<td>53 dB(A) to 69 dB(A)</td>
<td>55 dB(A) to 71 dB(A)</td>
</tr>
<tr>
<td>C700 (1st generation)</td>
<td>53 dB(A) to 70 dB(A)</td>
<td>54 dB(A) to 71 dB(A)</td>
<td>55 dB(A) to 73 dB(A)</td>
</tr>
<tr>
<td>C500 (2nd generation)</td>
<td>50 dB(A) to 68 dB(A)</td>
<td>55 dB(A) to 73 dB(A)</td>
<td>56 dB(A) to 74 dB(A)</td>
</tr>
<tr>
<td>C700 (2nd generation)</td>
<td>48 dB(A) to 69 dB(A)</td>
<td>52 dB(A) to 73 dB(A)</td>
<td>53 dB(A) to 74 dB(A)</td>
</tr>
</tbody>
</table>

Secondary display

A secondary display has to meet the minimum technical specifications outlined in the following table. For information on how to connect a secondary display to the IACS, see page 49.

<table>
<thead>
<tr>
<th>General requirements</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>50.8 cm (20 in) display: 1680 x 1050</td>
<td>43.2 cm (17 in) display: 1440 x 900</td>
<td></td>
</tr>
<tr>
<td>Maximum supported distance</td>
<td>5 m (16.4 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>16:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display delay</td>
<td>250 ms in reference to the patient signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection to Cockpit</td>
<td>DVI-I 1 connector only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards compliance</td>
<td>IEC60950</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electromagnetic compatibility

The separation distances are written with regard to the Cockpit. The numbers provided will not guarantee faultless operation but should provide reasonable assurance of such. This information may not be applicable to other medical electrical equipment, and older equipment may be particularly susceptible to interference.

General notes

Medical electrical equipment needs special precautions regarding electromagnetic compatibility (EMC) and needs to be installed and put into service according to the EMC information provided in this manual.
Portable and mobile RF communications equipment can affect medical electrical equipment.

Cables and accessories not specified within the instructions for use are not authorized. Using other cables and/or accessories may adversely impact safety, performance and electromagnetic compatibility (increased emission and decreased immunity).

CAUTION
The equipment should not be used adjacent to or stacked with other equipment; if adjacent or stacked use is inevitable, the equipment should be observed to verify normal operation in the configuration in which it will be used.

NOTE
The equipment is intended for use in the electromagnetic environments specified below. The user of this equipment should assure that it is used in such an environment.

Electromagnetic emissions

<table>
<thead>
<tr>
<th>Emissions</th>
<th>Compliance according to...</th>
<th>Electromagnetic environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF emissions (CISPR 11)</td>
<td>Group 1</td>
<td>The equipment uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.</td>
</tr>
<tr>
<td>CISPR Emissions Classification</td>
<td>Class B</td>
<td>The equipment is suitable for use in all establishments including domestic establishments and those directly connected to the public low-voltage power network that supplies buildings used for domestic purposes.</td>
</tr>
<tr>
<td>Harmonic emissions (IEC 61000-3-2)</td>
<td>Class A</td>
<td></td>
</tr>
<tr>
<td>Voltage fluctuations / flicker (IEC 61000-3-3)</td>
<td>Complies</td>
<td></td>
</tr>
</tbody>
</table>
Electromagnetic immunity

<table>
<thead>
<tr>
<th>Immunity against...</th>
<th>IEC 60601-1-2 test level</th>
<th>Compliance level (of device)</th>
<th>Electromagnetic environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic dis-</td>
<td>Contact discharge: ±6 kV</td>
<td>±6 kV</td>
<td>Floors should be wood,</td>
</tr>
<tr>
<td>charge, ESD (IEC</td>
<td>Air discharge: ±8 kV</td>
<td>±8 kV</td>
<td>concrete or ceramic tile.</td>
</tr>
<tr>
<td>61000-4-2)</td>
<td></td>
<td></td>
<td>If floors are covered with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>synthetic material, the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>relative humidity should</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>be at least 30 %.</td>
</tr>
<tr>
<td>Electrical fast</td>
<td>PS250 / P2500 lines:</td>
<td>±2 kV</td>
<td>Mains power quality should</td>
</tr>
<tr>
<td>transients / bursts</td>
<td>±2 kV</td>
<td>±1 kV</td>
<td>be of a typical commercial</td>
</tr>
<tr>
<td>(IEC 61000-4-4)</td>
<td>Longer input / output</td>
<td></td>
<td>or hospital environment.</td>
</tr>
<tr>
<td></td>
<td>lines: ±1 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surges on AC</td>
<td>Common mode: ±2 kV</td>
<td>±2 kV</td>
<td>Mains power quality should</td>
</tr>
<tr>
<td>mains lines (IEC</td>
<td>Differential mode: ±1 kV</td>
<td>±1 kV</td>
<td>be of a typical commercial</td>
</tr>
<tr>
<td>61000-4-5)</td>
<td></td>
<td></td>
<td>or hospital environment.</td>
</tr>
<tr>
<td>Power frequency</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Equipment emitting high</td>
</tr>
<tr>
<td>magnetic field</td>
<td></td>
<td></td>
<td>levels of power line</td>
</tr>
<tr>
<td>50/60 Hz (IEC</td>
<td></td>
<td></td>
<td>magnetic fields (in excess</td>
</tr>
<tr>
<td>61000-4-8)</td>
<td></td>
<td></td>
<td>of 3A/m) should be kept at</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a distance to reduce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>likelihood of interference.</td>
</tr>
</tbody>
</table>

Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%. Mains power quality should be of a typical commercial or hospital environment. Equipment emitting high levels of power line magnetic fields (in excess of 3A/m) should be kept at a distance to reduce likelihood of interference.
Technical data

<table>
<thead>
<tr>
<th>Immunity against...</th>
<th>IEC 60601-1-2 test level</th>
<th>Compliance level (of device)</th>
<th>Electromagnetic environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage dips and short interruptions on AC mains input lines (IEC 61000-4-11)</td>
<td>Dip >95 %, 0.5 periods Dip 60 %, 5 periods Dip 30 %, 25 periods Dip >95 %, 5 seconds</td>
<td>>95 %, 0.5 periods 60 %, 5 periods 30 %, 25 periods >95 %, 5 seconds</td>
<td>Mains power should be a typical commercial or hospital environment. If user requires continued operation during power mains interruptions, ensure batteries are installed and charged. Ensure battery life exceeds longest anticipated power outages or provide additional uninterruptible power source.</td>
</tr>
</tbody>
</table>
| Conducted RF RF coupled into lines (IEC 61000-4-6) Radiated RF (IEC 61000-4-3) | 150 kHz to 80 MHz 80 MHz to 2.5 GHz | 3 Vrms 3 V/m | Portable and mobile RF communications equipment should be used no closer to any part of the device, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter as below. Recommended separation distance \[d = \left(\frac{3.5}{V_1} \right)^{\sqrt{P}} \] \[d = \left(\frac{3.5}{E_1} \right)^{\sqrt{P}} \] \[d = \left(\frac{7}{E_1} \right)^{\sqrt{P}} \] 80 MHz to 800 MHz 800 MHz to 2.5 GHz where \(P \) is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and \(d \) is the recommended separation distance in meters (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range. Interference may occur in the vicinity of equipment marked with the following symbol: 📻 ☢️

\[V_1 \] V \[E_1 \] V/m
Technical data

Electromagnetic immunity

<table>
<thead>
<tr>
<th>Immunity against...</th>
<th>IEC 60601-1-2 test level</th>
<th>Compliance level (of device)</th>
<th>Electromagnetic environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the equipment is used exceeds the applicable RF compliance level above, the equipment should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Over the frequency range 150 kHz to 80 MHz, field strengths should be less than 3 V/m.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended separation distances

Recommended separation distances between portable and mobile RF telecommunication devices and the Cockpit

<table>
<thead>
<tr>
<th>max. P_{ERP} (W)</th>
<th>150 kHz to 800 MHz Distance 1) (m)</th>
<th>800 MHz to 2.5 GHz Distance 1) (m)</th>
<th>Comments (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.04</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.06</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.12</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>0.21</td>
<td>0.4</td>
<td>For example: WLAN 5250</td>
</tr>
<tr>
<td>0.100</td>
<td>0.38</td>
<td>0.73</td>
<td>For example: WLAN 2440 (Europe), Bluetooth</td>
</tr>
<tr>
<td>0.200</td>
<td>0.54</td>
<td>1.03</td>
<td>For example: WLAN 5250 (Europe)</td>
</tr>
<tr>
<td>0.250</td>
<td>0.6</td>
<td>1.03</td>
<td>For example: DECT-devices</td>
</tr>
<tr>
<td>1.000</td>
<td>1.2</td>
<td>2.3</td>
<td>For example: GSM 1800 / GSM 1900 / UMTS mobile phones, WLAN 5600 (not in Europe)</td>
</tr>
<tr>
<td>2.000</td>
<td>1.7</td>
<td>3.25</td>
<td>For example: GSM 900 mobile phones</td>
</tr>
<tr>
<td>3.000</td>
<td>2.08</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>3.8</td>
<td>7.27</td>
<td></td>
</tr>
<tr>
<td>100.00</td>
<td>12</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

1) **NOTE:** Information regarding separation distances (IEC 60601-1-2:2007, tables 4 and 6)
Index

Numerics
12-lead monitoring .. 193, 208
12-Lead wire set for ECG, connecting 184
3-, 5-, 6-lead wire sets for ECG, connecting 183

A
activating quiet mode .. 109
Adjusting archive settings for ST 125
Admitting a patient
 manually .. 91
 over the network 91
Adult patient category
 definition .. 92
 selecting .. 92
Airway adapter type, selecting 419
Alarm archive
 individual parameter 116
 multiple parameters 118
 ST ... 125
Alarm bar
 description of feature 101
 header bar ... 101
 multiple alarm conditions 101
 turning on/off .. 406
Alarm behavior
 cardiac bypass mode 107
 multiple alarms 98
 NIBP/SpO2 interlock 105
 OR mode .. 107
 privacy mode .. 106
 special alarms .. 105
 SpO2 desaturation 105
 standby mode ... 106
 zeroing IBP ... 106
Alarm conditions
 latching ... 98
 non-latching .. 98
Alarm defaults ... 134
Alarm groups, setting up 406
Alarm history .. 127
 after shutdown 128
 viewing .. 128
Alarm light, see alarm bar
Alarm limits
 Auto set all .. 127
 display on/off 131, 406
 for individual parameters 127
 Alarm messages, configuring 119
 Alarm messages, viewing current message .. 104
 Alarm monitoring
 multiple parameters, on/off 118
 single alarm on/off 116
 ST on/off ... 125
 turning alarm monitoring on/off 113
 Alarm priorities, see alarm grades
 Alarm processing 97
 Alarm ranges ... 134
 Alarm review, stored events 127
 Alarm settings
 configuring temporarily 130
 Alarm setup
 auto set limits 117
 changing alarm limits 117
 M540 settings, configuring 412
 remote control 132
 ST .. 123
 Alarm tone
 selecting tone type 409
 setting the volume 130, 407
 volume, minimum setting 407
 Alarm validation
 list of parameter validation times 99
 turning feature on/off 405
 Alarm volume ... 109
 minimum setting 72
 selecting ... 130, 407
 Alarms
 pre-silencing alarms 107
 viewing current 130
 Alarms, all alarms on/off 117
 Alarms, external devices 340, 348, 366, 378
 All alarms paused button 405
 Analog sync MCable 26
 Analog vs. digital display selection 419
 Apnea archive, CO2 324
 Apnea time, selecting 324
 Applications, available 452
 ARR
 configuring settings 123
 defaults .. 141
 display .. 204
 messages .. 466
 modes ... 202
 selecting leads 201
 selecting mode 204
 Arrhythmia processing 202
Index

Artifact, reducing .. 199
Assembling the IACS hardware 79
Assigning default view to profile 434
Atmospheric pressure setting 324
Attaching the M540 81
Attention tone volume, selecting 130, 391, 408
Auto alarm, turning reminder on/off 409
Auto measuring mode 307
Auto setting alarm limits 126
Auto view setup toolbar, on/off 393
Averaging C.O. ... 310

B
Banners, supported .. 54
BIS
supported parameters and settings 326
Bispectral index (BIS) monitoring 325
Body surface area, calculating 144
Boyd equation ... 144
Brightness of screen 59, 391

C
C.O.
auto mode ... 307
catheter size ... 312
catheter type display 312
color ... 313
computation constant, entering 313
color ... 313
connections .. 301
injectate volume, selecting 312
manual mode ... 309
measuring modes 307
messages ... 484
mode, selecting ... 313
monitoring principles 300
patient preparation 303
precautions .. 300
saving average .. 310
starting a measurement 309
starting measurement 313
Calculations
body surface area 144
drug calculations .. 153
hemodynamic calculations 149
lab data .. 148
oxygenation/ventilation calculations 151
saving calculations 148
viewing stored calculations 148, 154
Calibrating the touch screen 130, 391, 408
Cardiac bypass mode 59
alarms .. 107
message .. 107
Cardioversion .. 26
Care unit, assigning 421
Catheters
size display, C.O. 312
type, C.O. .. 312
Cause/remedy messages 456
CCO
display .. 344
external device connectivity 341
parameter selection 345
precautions .. 343
supported parameters 341
view all parameters 344
CentralStation connection, turning on/off 421
Citrix applications, configuring 427
Clinical password, configuring 419
CO2
apnea archive, selecting 324
apnea time selection 324
capnograms .. 321
connecting sensor 317
display .. 320
gas compensation selection 324
messages ... 487
patient preparation 319
precautions .. 317
waveform amplitude selection 324
zeroing .. 323
Cockpit, turning on/off 307
Code button .. 133
Code functions, included settings 410
CoIncidence detection (Resp) 229
Color
C.O. .. 313
CO2 .. 324
IBP .. 278
NIBP ... 278
Resp. ... 229
SpO2 .. 245, 248, 259
Temp .. 266
ventilator ... 361, 373
Configuring alarm settings 116
Configuring arrhythmia settings 123
Conflicts between pressure labels 290
Connections
12-Lead wire set 284
3-, 5-, 6-Lead wire sets 285
cardiac output .. 301
Dual Hemo M Cable 285
ECG lead wire sets 283
Hemo2 pod ... 263
Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Continuous NIBP mode, on/off ... 278
Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n ... 519
Dual Hemo MCable, description ... 282
DuBois equations .. 144
Duration of timed recordings ... 414, 416

E
ECG
12-lead monitoring .. 193, 208
connecting 12-lead wire set ... 184
connecting lead wire sets .. 182
display ... 187
electrode placement .. 190
heart rate source ... 194
infusion pumps ... 199
patient preparation .. 194
pulse tone source .. 194
QRS sync marker, on/off .. 196
roller bypass pumps ... 199
safety information .. 182
TENS signals .. 199
TruST 12-lead on/off .. 215

Events
marking ... 127
storing manually .. 127
Exporting profiles ... 436

External devices
alarms ... 340, 348, 366, 378
supported cardiac output devices 340

External devices - BIS monitoring 325

External devices - Medibus X ... 347

External devices - NMT .. 331

Function keys

Hemo4 pod ... 283
MPod - QuadHemo .. 284
neonatal ECG monitoring .. 185
QuadHemo MPod ... 284
SpO2 (Masimo) ... 236, 237
SpO2 (Nellcor) ... 254
Continuous NIBP mode, on/off ... 278
Current alarm messages .. 104

D
Daylight savings time, on/off ... 417
Deactivating alarm monitoring ... 113
Default profile, selecting .. 434
Defaults
alarms ... 134
arrhythmia ... 141
Defibrillator precautions .. 18
Deleting a profile ... 434
Demographics page .. 89
Device Combinations
2nd edition .. 14
3rd edition .. 14
Device connectivity .. 340, 348, 366, 378
Device label, entering .. 421
DHCP, on/off .. 422
Discharging a patient ... 91

Display
ARR .. 204
CCO .. 344
CO2 .. 320
ECG .. 187
IBP .. 286
NIBP ... 272
RESP ... 226, 327, 333
SpO2 (Masimo SET) .. 239
SpO2 (Nellcor OxiMax) .. 257
ST ... 209
Temperature .. 265
Ventilator .. 357, 369, 370, 382, 383

Display mode, selecting ‘auto’ or ‘manual’ mode 393
Display status, parameters .. 396
Display, customizing ... 59
Disposable airway adapter configuration 419
DNS, configuring ... 422
Docking station, description ... 24
Docking the M540 .. 38, 81
Drug calculations ... 153
Drug list, customizing ... 154
Dual Hemo MCable, connecting to M540 285

Index

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n
Index

on/off .. 393
setting up screen area 174
Minimum alarm volume 72, 407
Monitoring sweep speed, selecting 391
Monitoring unit
assigning ... 421
assigning label .. 421
Multiple alarm conditions 98

Options
device connectivity 348, 366, 378
external device alarms 348, 366, 378
Vent Central .. 366, 378
OR mode
alarms .. 107
on/off ... 406

N
Naming a profile .. 434
Nellcor Oximax MCable, connecting 254
Neonatal ECG monitoring, connections 185
Neonatal patient category
definition .. 92
selecting ... 92
Network
communication ... 40
communication interruptions 44
connecting to .. 453
setup .. 422
transfer .. 41
Neuroumouscular transmission (NMT) 335
NIBP
chime on/off .. 278
color setup ... 278
connecting hose and cuff 270
continuous mode, description 276
continuous mode, on/off 278
inflation mode, selecting 278
interlock feature on/off 406
interval measurement mode 274
interval time .. 278
measuring modes ... 274
mini trends .. 174
single measurement mode 274
venous stasis on/off 278
NIBP/SpO2 interlock alarms 105
Night time screen mode 391
NMT
PTC ... 332
supported modes ... 332
Non-latching alarms 98
Nurse call
description .. 132
technical data .. 510

O
One-shot alarms .. 96
Operating concept ... 35
Optimizing pacer processing 186, 200

Parameters
changing display status 396
configuring display .. 395
priority .. 64, 395
selecting units ... 391
Patient category
selecting .. 92, 93
types ... 92
Patient discharge .. 91
Patient monitor, description 24
Patient positioning .. 271
Patient preparation
cardiac output .. 303
CO2 ... 319
ECG ... 194
NIBP ... 271
RESP .. 224
SpO2 ... 238, 255
SpO2 (Masimo) .. 255
SpO2 (Nellcor) .. 255
Patient profile, selecting 420
Patient safety .. 15
PatientWatch, description 452
Pausing alarm monitoring 111
Pausing alarm tones 109
Paw scale, adjusting 361, 373
Pediatric patient category
definition .. 92
selecting .. 92

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 521
Index

Persistent alarms ... 96
Pre-configured code settings 133
Pre-silencing alarms .. 107
Precautions
 C.O ... 300
 CO .. 343
 CO2 ... 317
 ECG .. 182
 IBP .. 282
 Respiration .. 220, 327, 333
 SpO2 .. 253
Pressure channels, labelling 288
Pressure label conflict 290
Preventive maintenance 502
Primary recorder, selecting 423
Print screen, requesting 444
Printing
 Alarm history report 446
 Calculations report 447
 Case summary report 447
 continuous recordings 443
 Continuous waveform report 445
 ECG report .. 444
 Graph vitals report 446
 OR report .. 447
 Rest ECG report ... 445
 ST report .. 445
 Timed recordings ... 443
 Timed waveform report 445
 Trend graph report 446
 trend graphs ... 166
 Trend table report 446
 Ventilation/anesthesia report 446
Priority level of alarm messages 456
Priority, parameters ... 64
Privacy alarms .. 106
Privacy mode ... 78
Problem solving .. 456
Procedures, recruitment 167
Profiles
 adding a description 434
 adding default view 434
 default profile assigning 434
 default profiles (definition) 66
 deleting a profile 434
 Exporting with a USB device 436
 Importing with a USB device 436
 modifying .. 431
 naming a profile ... 434
 patient profiles (definition) 66
 selecting .. 430
 settings not included in a profile 71
settings, list of patient profiles 67
setup functions .. 430
system functions .. 430
system profiles (definition) 72
system profiles, list of 72
transferring .. 76, 435
PS250
 cleaning .. 495
 power supply, description 23
 technical specifications 506, 508
PS2500
 cleaning .. 495
PTC ... 332
Pulse tone
 signal source (SpO2) 244, 258
 source, selecting .. 194
PWP ... 296
Q
 QRS sync marker, on/off 196
 QuadHemo pod
 connecting to M540 284
 description of ... 281
R
 R50 recorder
 technical data .. 511
 R50N recorder
 description of ... 26
 primary recorder, selecting 423
 secondary recorder, selecting 423
Recordings
 alarm recordings ... 442
 alarm waveform on/off 414
 continuous recordings 443
 continuous recordings, requesting 443
 delay setting ... 414, 416
 duration of ... 413, 414
 messages .. 491
 remote recordings 441
 timed recordings, requesting 443
 timed, description 441
 waveform selection 414
Recruitment page ... 167
Regional time/date selection 417
Remote control
 alarms ... 132
 from central station (ICS) 44
 recordings .. 441
Remote notification of alarms 132
Remote view functions 44
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removing the M540</td>
<td>81</td>
</tr>
<tr>
<td>Repairs</td>
<td>12</td>
</tr>
<tr>
<td>Respiration</td>
<td>220</td>
</tr>
<tr>
<td>Respiration</td>
<td>327</td>
</tr>
<tr>
<td>Respiration</td>
<td>333</td>
</tr>
<tr>
<td>site of operation</td>
<td>17</td>
</tr>
<tr>
<td>Safety checks</td>
<td>500</td>
</tr>
<tr>
<td>Saving calculations</td>
<td>148</td>
</tr>
<tr>
<td>Screen brightness</td>
<td>59</td>
</tr>
<tr>
<td>selecting</td>
<td>391</td>
</tr>
<tr>
<td>Screen layout</td>
<td>65</td>
</tr>
<tr>
<td>IT tabs</td>
<td>63</td>
</tr>
<tr>
<td>mini trends</td>
<td>61</td>
</tr>
<tr>
<td>split screen</td>
<td>60</td>
</tr>
<tr>
<td>Secondary recorder, selecting</td>
<td>423</td>
</tr>
<tr>
<td>Sensitivity mode (SpO2)</td>
<td>244</td>
</tr>
<tr>
<td>Sensor zeroing, IBP</td>
<td>290</td>
</tr>
<tr>
<td>Setting alarm limits, see Alarm limits</td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Install persist</td>
<td>72</td>
</tr>
<tr>
<td>Shared</td>
<td>72</td>
</tr>
<tr>
<td>Silencing alarm tones</td>
<td>109</td>
</tr>
<tr>
<td>Silencing alarms (ahead of time)</td>
<td>107</td>
</tr>
<tr>
<td>Simulation mode, on/off</td>
<td>419</td>
</tr>
<tr>
<td>Single measurement mode</td>
<td>274</td>
</tr>
<tr>
<td>Single parameter alarms, on/off</td>
<td>116</td>
</tr>
<tr>
<td>Site of operation, precautions</td>
<td>17</td>
</tr>
<tr>
<td>Six-lead ST monitoring</td>
<td>207</td>
</tr>
<tr>
<td>Sound pressure, technical specifications</td>
<td>512</td>
</tr>
<tr>
<td>Special alarm conditions</td>
<td>105</td>
</tr>
<tr>
<td>Split screen mode</td>
<td>60</td>
</tr>
<tr>
<td>tabular trends</td>
<td>174</td>
</tr>
<tr>
<td>SpO2</td>
<td>33</td>
</tr>
<tr>
<td>averaging time, selecting</td>
<td>245</td>
</tr>
<tr>
<td>color</td>
<td>248</td>
</tr>
<tr>
<td>desaturation alarms</td>
<td>105</td>
</tr>
<tr>
<td>FastSat mode</td>
<td>244</td>
</tr>
<tr>
<td>measurement method</td>
<td>232</td>
</tr>
<tr>
<td>messages</td>
<td>252</td>
</tr>
<tr>
<td>patient preparation</td>
<td>470</td>
</tr>
<tr>
<td>precautions</td>
<td>238</td>
</tr>
<tr>
<td>precautions</td>
<td>255</td>
</tr>
<tr>
<td>pulse tone on/off</td>
<td>244</td>
</tr>
<tr>
<td>selecting signal source</td>
<td>244</td>
</tr>
<tr>
<td>sensitivity mode (SpO2)</td>
<td>244</td>
</tr>
<tr>
<td>SpO2 tone volume, selecting</td>
<td>244</td>
</tr>
<tr>
<td>waveform size</td>
<td>244</td>
</tr>
<tr>
<td>waveform size</td>
<td>258</td>
</tr>
<tr>
<td>12-lead ST monitoring</td>
<td>207</td>
</tr>
<tr>
<td>6-lead ST monitoring</td>
<td>207</td>
</tr>
<tr>
<td>alarm on/off</td>
<td>125</td>
</tr>
<tr>
<td>alarm setup</td>
<td>123</td>
</tr>
<tr>
<td>event duration</td>
<td>125</td>
</tr>
<tr>
<td>ISO points</td>
<td>210</td>
</tr>
<tr>
<td>measurement points, changing</td>
<td>210</td>
</tr>
<tr>
<td>messages</td>
<td>464</td>
</tr>
</tbody>
</table>

Instructions for use – Infinity Acute Care System – Monitoring Applications VG4.n 523
Index

Standard labels, IBP 289
Standby mode 77
Stopping waveforms 54
Storing alarms, see Alarm archive 289
Storing calculations 422
Symphony application 148
System cable, connecting 83
System overview 37
T
Tabular trend report
printing .. 174
selecting interval 416
Tabular trends in split screen mode 174
Technical data
electromagnetic compatibility 512
nurse call 510
P2500 .. 508
PS250 power supply 506, 508
R50 recorder 511
secondary display 122
Temperature
dual temperature cable 264
messages 478
monitoring principles 262
Temporarily pausing alarm monitoring 111
TENS signals 199
Time zone, selecting 417
Timed recording duration 414, 416
Timed recordings, requesting 441
Tone volume
alarm tones 130, 407
attention tone 391
selecting 130, 408
SpO2 pulse tone, on/off 244, 258
Touch screen calibration 244, 258
Transferring patient data 41
Transferring profiles 435
Trend duration on report 416
Trend graphs
navigating through trend data 165
printing 166
trend scales, changing 166
Trend scales 166
Trend Table 170
customizing tabular trends 172
navigating trend data 173
printing report 174
Trends
mini trends 174
trend graphs 162
Trends graph page 163
Troubleshooting 456
TruST 33
Turning on the Cockpit 88
Turning on the M540 88
Twelve-lead ST monitoring 207
Types of reports 444
U
Undocking the M540 39, 81
V
Validating alarm conditions 99
Venous stasis on/off 278
Vent Central option 366, 378
Ventilator
display 357, 369, 370, 382, 383
monitoring principles 366, 378
Ventilator loops 358, 371, 383
Ventilator setup
color selection 361, 373
Paw scale 361, 374
Volume scale 361, 373
Views
creating 403
description 65
modifying 403
saving 403
saving changes 397
Virus protection 18
Visual inspection 499
Volume (vent) scale 361, 374
Index

W

Waveforms
 left or right display 393
 number, selecting 393
 SpO2 amplitude 244, 258
 stopped 54
Web browser
 adding a page 426
 configuring 425
 deleting a page 427
Wedge pressure 293

Z

Zeroing
 a specific sensor, IBP 291
 all sensors 291
 zeroing IBP - effects on alarms 106
These instructions for use apply to Infinity Acute Care System SW VG4.n with the Serial No.:
If no Serial No. has been filled in by Dräger, these instructions for use are provided for general information only and are not intended for use with any specific machine or unit.
This document is provided for customer information only, and will not be updated or exchanged without customer request.s

Draeger Medical Systems, Inc.
3135 Quarry Road
Telford, PA 18969-1042
U.S.A.
(215) 721-5400
(800) 4DRAGER
(215) 723-5935
FAX http://www.draeger.com

Drägerwerk AG & Co. KGaA
Moislinger Allee 53 - 55
D-23542 Lübeck
Germany
+49 451 8 82-0
FAX +49 451 8 82-20 80
http://www.draeger.com

Dräger reserves the right to make modifications to the equipment without prior notice.