Nitrogen dioxide (NO_2) is a highly toxic gas that is generated as a component of diesel engine emissions and as a byproduct of blasting.

To support mine safety, there is an emerging global trend to reduce levels of human exposure to NO$_2$ in mining workplaces. In Canada, the generally accepted threshold level has been 3 parts per million (ppm). However, there is a recent trend to reduce this level to 0.2 ppm – which is 15 times lower than it was in the past.

In Canada, permissible exposure levels for NO$_2$ are regulated by province/territory. To date, the ACGIH exposure limits for NO$_2$ at TLV-0.2 ppm and STEL 1.0 ppm have been adopted by British Columbia, Manitoba, Newfoundland and Labrador, and Nova Scotia.

This whitepaper addresses current NO$_2$ limits in Canada and new legislation designed to protect worker health and improve mine safety. It also explores innovative gas detection technologies that can help mines comply with this new legislation.

“Mines will have to be more diligent in their approach to the measuring and recording of information to meet the legislative requirements in their various districts that continue to change and reduce the allowable personal exposure levels (i.e., ACGIH reduction of NO$_2$ levels). Mines therefore require adequate monitoring tools capable of measuring these lower values of contaminants to establish and evaluate the appropriate controls and confirm compliance to legislation.”

– Douglas O’Connor, President of DOCL, a Hard Rock Mine Ventilation Consultant, Sudbury, Ontario

BACKGROUND

Definition of nitrogen dioxide

Nitrogen dioxide (NO_2) is a highly toxic gas that is barely noticeable to humans. Depending on the temperature, nitrogen dioxide can be a colorless solid, a yellow liquid, or a reddish-brown gas. It is heavier than air and is acidic, corrosive, and oxidizing.

Effect of NO$_2$ on humans

The human olfactory perception threshold of NO$_2$ is between 0.1 and 0.2 ppm, depending on the study conditions.* With slowly increasing concentrations, the odour of NO$_2$ is not perceived until much higher concentrations have been reached (Henschler et al 1960), so the natural human warning effect of the gas is poor. For this reason, portable instruments with integrated NO$_2$ sensors are becoming increasingly important in mines.

The physical effect of NO\textsubscript{2} on humans is irritation of the deep compartments of the respiratory tract. To support mine safety, government agencies around the world have begun to mandate lower NO\textsubscript{2} levels in the ambient air in mining environments.

Causes of NO\textsubscript{2}

In mining and tunneling, diesel engines produce nitrogen oxide (NO) as a byproduct of combustion. In the presence of air, NO reacts almost immediately with oxygen in the air to form NO\textsubscript{2}. With the exception of certain drilling equipment and some specialty applications, much of the mechanized equipment used in metal mines today is powered by diesel fuel.

NO\textsubscript{2} is also caused by blasting. During an explosion, all explosive materials produce a cloud of reactive substances – the most toxic of which is NO\textsubscript{2}.

Blasters are aware that the gases produced by a blast are unhealthy and typically wait for the gases to dissipate before allowing anyone to return to the blast area. However, less consideration is given to the NO that remains in the muck pile. The gases in the muck pile are predominately blasting fumes and do not dissipate.

As a part of mine safety awareness, it is important to be aware that NO\textsubscript{x} (NO/NO\textsubscript{2}) will be released during the mucking operation with the potential for serious physical harm.

COMPLYING WITH NEW REGULATIONS AND SUPPORTING MINERS’ HEALTH

Listed below are basic steps that mines can take to comply with the new regulations and protect their workers from harmful levels of NO\textsubscript{2}.

Analyze current NO\textsubscript{2} levels

The first step is to determine the level of NO\textsubscript{2} to see if the working environment is in compliance. This includes clearance after blasting, ventilation checks, and exposure assessment of high risk work places.

Applicable technology: Portable gas detectors with low concentration NO\textsubscript{2} sensors.

Identify and eliminate sources of NO\textsubscript{2}

It is crucial to identify and eliminate the biggest sources of NO\textsubscript{2}. This may include finding the worst polluting engines and taking corrective measures to limit their NO\textsubscript{2} emissions.

Applicable technology: Emission testing units.

Continuously monitor the environment

After taking corrective action and documenting compliance with the new NO\textsubscript{2} limits, it is necessary to continually monitor the environment – especially in areas where workers will be at higher risk of exposure to NO\textsubscript{2}, such as workers operating or in proximity to diesel engines, in less ventilated areas, and close to mucking or crushing operations.

CURRENT NO\textsubscript{2} LIMITS ACROSS CANADA BY PROVINCE/TERRITORY

<table>
<thead>
<tr>
<th>PROVINCES</th>
<th>8-hour time weighted average (TWA) exposure limit of 3 ppm and 15-minute STEL of 5.0 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta</td>
<td>8-hour TWA exposure limit of 3.0 ppm and 15-minute STEL of 5.0 ppm</td>
</tr>
<tr>
<td>British Columbia</td>
<td>TLV-0.2 ppm and STEL 1.0 ppm</td>
</tr>
<tr>
<td>Manitoba</td>
<td>TLV-0.2 ppm and STEL 1.0 ppm</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>Information unavailable as of publication date</td>
</tr>
<tr>
<td>Newfoundland and Labrador</td>
<td>TLV-0.2 ppm and STEL 1.0 ppm</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>TLV-0.2 ppm and STEL 1.0 ppm</td>
</tr>
<tr>
<td>Ontario</td>
<td>8-hour TWA exposure limit of 3.0 ppm and 15-minute STEL of 5.0 ppm</td>
</tr>
<tr>
<td>PEI</td>
<td>No underground mining currently in operation.</td>
</tr>
<tr>
<td>Quebec</td>
<td>8-hour TWA exposure limit of 3.0 ppm</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>Referred to as Workplace Contamination Limits (WCL or CL for 8-hr or 15-min.): TLV-5.6mg/m3 (3.0 ppm) and STEL-9 mg/m3 (5.0 ppm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TERRITORIES</th>
<th>Information unavailable as of publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Territories</td>
<td>Information unavailable as of publication date</td>
</tr>
<tr>
<td>Nunavut</td>
<td>Information unavailable as of publication date</td>
</tr>
<tr>
<td>Yukon</td>
<td>Information unavailable as of publication date</td>
</tr>
</tbody>
</table>

For gathering data for control and compliance: Dräger X-dock® calibration and bump test station
The X-dock enables mine operators to manage their full fleet of portable Dräger gas detection instruments. Automatic bump tests and calibrations with short testing times reduce gas consumption, save time, and reduce operating expenses. Comprehensive evaluations and documentation provide a clear overview of the entire fleet, and can also report and document gas alarms and exposure levels.

As a networked solution, this software enables remote management of gas detection devices. The records produced by the X-dock reduce the time and effort required for compliance audits.

For ventilation monitoring: Dräger Stationary NO₂ – Low Concentration Sensor
This stationary sensor can detect NO₂ concentrations as low as .05 ppm. It is suitable for use in a variety of Dräger fixed gas systems, including PointGard® II monitors, Polytron® 7000, 5100 and 8000 units. The Polytron 7000 is a low maintenance and intrinsically safe transmitter designed for toxic gas monitoring applications. Polytron 5100 and Polytron 8000 gas detector transmitters are explosion-proof.

For emissions testing at the source: Dräger EM200-E
This portable, handheld emission testing device was specifically tailored to the needs of the mining environment. It precisely determines the content of CO, NO, NO₂, and NOx in diesel engine exhaust and helps to identify engines outside of permissible emission limits with spot checks. This will help in identifying and eliminating the major sources of NOx emissions from combustion engines.
If integrated into regular engine maintenance intervals and evaluated properly, the monitoring of emission levels can also be used to adjust maintenance schedules to avoid breakdowns, provide spares in advance, and improve fuel efficiency. This can result in a significant increase in engine uptime and thus operational efficiency and increased productivity.

SUMMARY

Reliable technology now exists to continuously monitor levels of NO₂ and other toxic substances throughout the mining environment. These devices provide valuable information that can help mines protect their workers against exposure to harmful levels of NO₂. In addition, data collection and reporting software can reduce the time and effort involved in complying with the new regulations.

The ultimate benefit of reducing exposure to NO₂ in Canadian mines goes directly to those who work at the mine. By understanding the medical-based reasons for adopting the lower exposure levels for NO₂ and taking steps toward compliance now, mine operators can avoid unnecessary worker exposure to NO₂ – and can also avoid possible work disruption if the new exposure levels are adopted in their province/territory.

Questions?

To learn more about NO₂ detection and technology that can support mine safety and aid in compliance with new lower limits, please contact:

Jason Morton
Product & Application Support Specialist
Jason.morton@draeger.com
905-212-6576

PointGard®, Polytron®, X-am®, X-dock® and X-zone® are trademarks of Dräger.