Dräger Babylog® VN500
Neonatal Open Care

For generations to come. The Babylog® VN500 combines Dräger’s years of experience with the latest technology. The result is a complete, integrated ventilation solution for the tiniest of patients. Move on toward new frontiers today and be prepared for the developments of tomorrow.
Benefits

Configurable user interface and monitoring tools
- Individual monitoring views that can be determined by the user
- Standardised, intuitive and user-friendly graphical user interface
- Online help including context-sensitive help functions
- Extended monitoring functions and smart data visualizations

Decision-making tools that decrease cognitive workload
- Smart Pulmonary View provides a graphical display of the compliance and resistance, including spontaneous breathing
- Trending, measured parameters, waveforms and loops

Workstation functions
- Configuration to suit your needs
- Downloadable screenshots for training, research and knowledge transfer
- Fast, standard configuration of all Babylog VN500 devices via USB
- Ability to connect the C500 Cockpit display to an overhead projector
- Several log export options to support learning and research

Advanced respiratory care
- HFOV including ‘sigh’ breaths for lung recruitment and Volume Guarantee
- Original Dräger leak adaptation and leak compensation technology to maintain sensitive triggering and volume targets
- PC-MMV can be used for weaning and promotes spontaneous breathing and automatically adapts support in line with patient needs
- Integrated non-invasive ventilation and high-flow oxygen therapy
Accessories

Nasal prongs

Nasal prong XS, Order-no. 8418415 (set of 10)
Nasal prong S, Order-no. 8418605 (set of 10)
Nasal prong M, Order-no. 8418416 (set of 10)
Nasal prong L, Order-no. 8418531 (set of 10)
Nasal prong XL, Order-no. 8418417 (set of 10)

Neonatal Care Accessories

Dräger accessories for neonatal ventilation and thermotherapy ventilate gently and effectively, reduce stress and help promote the development of the newborn with a wide range of accessories designed specifically for use with the smallest of patients.

BabyFlow disposable

Order-no. 8418583 (set of 20)
Related Products

Caleo®

The Caleo® provides an ideal microenvironment for neonates by delivering advanced thermoregulation parameters. The Caleo® was designed to offer intelligent accessibility and the nurturing power of developmental care. It brings ease of use and practical benefits to infants, caregivers and parents.
Technical Data

Patient type
- Neonatal and pediatric patients

Ventilation settings

Ventilation modes
- Pressure-controlled ventilation:
 - PC-CMV
 - PC-AC
 - PC-SIMV
 - PC-PSV
 - PC-MMV
 - PC-HFO
 - PC-APRV

- Support of spontaneous breathing:
 - SPN-CPAP/PS
 - SPN-CPAP/VS
 - SPN-PPS
 - SPN-CPAP

Enhancements
- Apnea ventilation
- Flow trigger
- Sigh
- Volume Guarantee (VG)
- Smart Pulmonary View
- Automatic Tube Compensation™ (ATC)
- AutoRelease (in PC-APRV)
- HFO-Sigh
- Volume Guarantee for HFO (HFO-VG)
- Leak Compensation
- O_2-therapy

Special procedures
- Suction maneuver
- Manual inspiration/hold
- Medication nebulization

Therapy types
- Invasive ventilation (Tube)
- Non-invasive ventilation (NIV)
- O_2-therapy

Respiratory rate (RR)
- 0.5 to 150/min

Inspiratory time (Ti)
- 0.1 to 3 s

Maximum inspiratory time for flow cycled breaths (Timax)
- Neonates 0.1 to 1.5 s
- Pediatric patients 0.1 to 4 s

Tidal volume (VT)
- Neonates 2 to 100 mL
- Pediatric patients 20 to 300 mL

Inspiratory flow (Flow)
- Neonates 2 to 30 L/min
- Pediatric patients 2 to 30 L/min

Tidal volume during Apnea Ventilation (VTapn)
- Neonates 2 to 100 mL
- Pediatric patients 20 to 300 mL

Respiratory rate during Apnea Ventilation (RRapn)
- 2 to 150/min

Inspiratory pressure (Pinsp)
- 1 to 80 mbar (or hPa or cmH$_2$O)

Inspiratory pressure limit (Pmax)
- 2 to 100 mbar (or hPa or cmH$_2$O)

Positive end-expiratory pressure (PEEP)
- 0 to 35 mbar (or hPa or cmH$_2$O)

Rise time for pressure support (Slope)
- Neonates 0 to 1.5 s
- Pediatric patients 0 to 2 s

O_2 concentration (FiO$_2$)
- 21 to 100 Vol%

Trigger sensitivity (Flow trigger)
- 0.2 to 5 L/min
Technical Data

Automatic Tube Compensation* (ATC)
- Inner diameter of the tube (Tube Ø)
 - Endotracheal tube (ET)
 - Pediatric patients 2 to 8 mm (0.08 to 0.31 in)
 - Neonates 2 to 5 mm (0.08 to 0.2 in)
 - Tracheostomy tube (Trach.)
 - Pediatric patients 2.5 to 8 mm (0.1 to 0.31 in)
 - Degree of compensation 0 to 100%

High Frequency Oscillation (PC-HFO)
- Mean airway pressure (MAPhf) 5 to 50 mbar (or hPa or cmH₂O)
- Frequency of oscillation (fhf) 5 to 20 Hz
- I to E (I:Ehf) 1:1 to 1:3
- Pressure amplitude (Ampl hf) 5 to 90 mbar (or hPa or cmH₂O)
- Maximum pressure amplitude (Ampl hf max) in HFO (VG) 5 to 90 mbar (or hPa or cmH₂O)
- Tidal volume (VThf) 0.2 to 40 mL
- Sigh pressure (Psigh) 6 to 80 mbar (or hPa or cmH₂O)
- Respiratory rate of sigh (RRsigh) 0 to 30 /min
- Sigh pressure rise time (Slope sigh) Pediatric patients 0 to 2 s, Neonates 0 to 1.5 s
- Sigh inspiratory time (Tisigh) 0.1 to 3 s

Leakage compensation
- On / Off
- On: full compensation active
- Off: trigger compensation active

O₂-therapy
- Continuous Flow 2 to 50 L/min
- O₂ concentration FiO₂ 21 to 100 Vol%

Displayed measured values
- Positive end-expiratory pressure (PEEP)
- Peak inspiratory pressure (PIP)
- Mean airway pressure (Pmean)
- Minimum airway pressure (Pmin)
- Lower pressure level in APRV (Plow)
- End-inspiratory pressure for mandatory breaths (EIP)
- Upper pressure level in APRV (Phigh)
- Range -60 to 120 mbar (or hPa or cmH₂O)

Flow measurement (proximal)
- Expiratory minute volume (MVe)
- Inspiratory minute volume (MVI)
- Mandatory expiratory minute volume (MVemand)
- Spontaneous expiratory minute volume (MVspon)
- Spontaneous expiratory minute volume (MV)
- Range 0 to 30 L/min BTPS

Tidal volume measurement
- Tidal volume (VT)
- Inspiratory tidal volume (not leakagecompensated) of mandatory breaths (VTimand)
- Expiratory tidal volume (not leakagecompensated) of mandatory breaths (VTemand)
- Inspiratory tidal volume (not leakagecompensated) of spontaneous breaths (VTispon)
- Range 0 to 1,000 mL BTPS
Technical Data

<table>
<thead>
<tr>
<th>Respiratory rate measurement</th>
<th>Mandatory respiratory rate (RRmand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous respiratory rate (RRspon)</td>
<td></td>
</tr>
<tr>
<td>Range 0 to 300/min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O₂ measurement (inspiratory side)</th>
<th>Inspiratory O₂ concentration (in dry air) (FiO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range 18 to 100 Vol%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO₂ measurement in mainstream (pediatric patients only)</th>
<th>End-expiratory CO₂ concentration (etCO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range 0 to 100 mmHg</td>
<td></td>
</tr>
</tbody>
</table>

Displayed calculated values

<table>
<thead>
<tr>
<th>Compliance (C)</th>
<th>Range 0 to 650 mL/mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (R)</td>
<td>Range 0 to 1,000 mbar/(L/s)</td>
</tr>
<tr>
<td>Leakage minute volume (MVleak)</td>
<td>Range 0 to 30 L/min BTPS</td>
</tr>
<tr>
<td>Rapid Shallow Breathing (RSB)</td>
<td>Range Neonates 0 to 300 (/min/mL)</td>
</tr>
<tr>
<td></td>
<td>Range Pediatric patients 0 to 9999 (/min/L)</td>
</tr>
</tbody>
</table>

| Curve displays | Airway pressure Paw (t) -30 to 100 mbar Flow (t) -40 to 40 L/min Volume V (t) 2 to 300 mL CO₂ (t) 0 to 100 mmHg |

Alarms/Monitoring

<table>
<thead>
<tr>
<th>Expiratory minute volume (MVe)</th>
<th>High/Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway pressure (Paw)</td>
<td>High/Low</td>
</tr>
<tr>
<td>Insp. O₂ concentration (FiO₂)</td>
<td>High/Low (automatic)</td>
</tr>
<tr>
<td>End-expiratory CO₂ concentration (etCO₂)</td>
<td>High/Low</td>
</tr>
<tr>
<td>Respiratory rate (RR)</td>
<td>High</td>
</tr>
<tr>
<td>Volume monitoring (VT)</td>
<td>Low (automatic)</td>
</tr>
<tr>
<td>Apnea alarm time (Tapn)</td>
<td>5 to 60 seconds, Off</td>
</tr>
<tr>
<td>Disconnect alarm delay time (Tdisconnect)</td>
<td>0 to 60 seconds</td>
</tr>
</tbody>
</table>

Performance characteristics

Control principle	time-cycled, pressure-controlled, volume-constant
Inspiratory flow (BTPS)	max. 60 L/min
Base flow, neonates	6 L/min
Base flow, pediatric patients	3 L/min

| Safety valve | Opens if medical compressed air supply fails (supply gas flow is not sufficient to provide the inspiratory flow required), enables spontaneous breathing with ambient air. |

Endotracheal suction

Disconnection detection	automatic
Reconnection detection	automatic
Initial oxygen enrichment	max. 3 minutes
Active suction phase	max. 2 minutes
Final oxygen enrichment	max. 2 minutes
Oxygen enrichment for suction maneuver	Factor for neonates 1 to 2
	Factor for pediatric patients 1 to 2

Maneuver settings

Sigh pressure (ΔintPEEP)	0 to 20 mbar (or hPa or cmH₂O)
Time interval between sighs (Interval sigh):	20 s to 180 min
Number of cycles for a sigh (Cycles sigh):	1 to 20 exhalations
Medication nebulization	for 5, 10, 15, 30 minutes
Control principle	time-cycled, pressure-controlled, volume-constant
Technical Data

Inspiratory flow (BTPS)

- Pediatric patients: 2 to 30 L/min
- Neonates: 2 to 30 L/min

Operating data

<table>
<thead>
<tr>
<th>Mains power supply</th>
<th>100 V to 240 V, 50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption</td>
<td></td>
</tr>
<tr>
<td>at 230 V</td>
<td>max. 1.4 A</td>
</tr>
<tr>
<td>at 230 V</td>
<td>max. 3.0 A</td>
</tr>
<tr>
<td>Inrush current</td>
<td>approx. 8 to 24 A peak</td>
</tr>
<tr>
<td></td>
<td>approx. 6 to 17 A quasi RMS</td>
</tr>
</tbody>
</table>

Power consumption

- Maximum during ventilation, without charging the battery: 300 W
- approx. 100 W ventilation unit with Medical Cockpit
- approx. 180 W with GS500

Digital machine output

- Digital output and input via an RS232 C interface Dräger MEDIBUS and MEDIBUS.X

Gas supply

- O₂ gauge pressure: 2.7 to 6.0 bar (or 270 to 600 kPa or 39 to 87 psi)
- Air gauge pressure: 2.7 to 6.0 bar (or 270 to 600 kPa or 39 to 87 psi)

Physical Specifications

Dimensions (W x H x D)

- Babylog® VN500 and Infinity® C500: 420 mm x 685 mm x 410 mm (16.5 in x 27.0 in x 16.1 in)
- Babylog® VN500 and Infinity® C500 on trolley: 577 mm x 1,420 mm x 687 mm (22.7 in x 55.1 in x 26.7 in)

Weight

- Babylog® VN500 and Infinity® C500: approx. 25 kg (55.1 lbs)
- Babylog® VN500 and Infinity® C500 on trolley: approx. 59 kg (130 lbs)
- GS500: approx. 10.5 kg (23 lbs)
- PS500: approx. 27 kg (59.5 lbs)
- Adapter for 38 mm pole: approx. 2.35 kg (5.18 lbs)

Infinity® C500

- Diagonal screen size: 17" TFT color touch screen
- Input / Output ports:
 - RS232 (9-pin) connectors
 - USB ports for data collection
 - 1 DVI for digital video output
 - RJ 45 Ethernet connectors (service purposes only)

ATC, trademarked by Dräger. **AutoFlow**, trademarked by Dräger

BTPS – Body Temperature Pressure Saturated. Measured values relating to the conditions of the patient lung (98.6 °F), steamsaturated gas, ambient pressure.

1 mbar = 100 Pa

Some functionalities are available as an option.
Not all products, features, or services are for sale in all countries. Mentioned Trademarks are only registered in certain countries and not necessarily in the country in which this material is released. Go to www.draeger.com/trademarks to find the current status.