Options for spontaneous breathing

Let your patients breathe spontaneously at any time during mechanical ventilation with the options PC-BIPAP\(^*\), PC-APRV\(^**\), VC-MMV\(^**\) and AutoFlow\(^\circ\).

- Evita® V300
- Savina® 300 Classic
- Savina® 300 Select

The advantages of the PC-BIPAP, PC-APRV, VC-MMV and AutoFlow options:

- Reduced invasiveness
- Improved ventilation
- Less need for sedation
- Lung protective ventilation
- Effective, continuous weaning

MASTERING THE CHALLENGES OF MECHANICAL VENTILATION

Avoiding trauma

Mechanical ventilation leads to distension of the lungs beyond normal physiological limits. Pulmonary pathology and concomitant critical illness can increase the stresses within the lung tissue even further. These unnaturally high pressures can lead to compromised hemodynamic and reduced pulmonary perfusion, which in turn can limit gas exchange. Modern ventilation strategies can help minimize these effects by reducing invasiveness.

Activating problem zones

Another challenge involves the basal segments of the lung – the problem zones of mechanical ventilation. Due to their peripheral location, it is often difficult to aerate them effectively with mechanical ventilation. Spontaneous breathing can help improve the ventilation of these areas. It has been shown\(^1,2\) that spontaneous respiration can recruit alveoli in atelectatic regions of the lung, which in turn improves gas exchange and reduces intrapulmonary shunting.

Letting your patient breathe

During conventional mechanical ventilation, the ventilator will not allow the patient to breathe spontaneously. Breathing efforts by the patient are often considered to be disruptive in these modes and are usually controlled by sedation. In contrast, modern ventilation strategies allow spontaneous breathing at any time, helping to stimulate the patient’s respiratory drive. This can help to reduce weaning times.\(^2\)

Protecting the lung

By increasing the ratio of spontaneous to mechanical respiration, mean airway pressures can be reduced. Ventilation is less invasive and consistent, lung protective ventilation becomes possible. Spontaneous breathing translates to less stress for the patient, thereby reducing the need for sedation and weaning times.

*Trademark Used Under License

**not available for Savina® 300 Classic
OPTIONS FOR SPONTANEOUS BREATHING

Optimizing gas distribution, avoiding barotrauma
PC-BIPAP and AutoFlow deliver air with decelerating flow. This means that slow areas of the lung have enough time for effective gas exchange while fast areas are not overdistended. By avoiding barotrauma and optimizing gas distribution within the lung, this strategy makes an important contribution to protective ventilation.

The improvement of gas exchange is the primary goal of any ventilation strategy in critically ill patients.
- Spontaneous breathing has inherent advantages that lead to an increase in alveolar recruitment and pulmonary perfusion.
- Highly homogeneous gas distribution within the lungs, together with stable hemodynamics, lead to improved organ oxygenation.

PHYSIOLOGICAL CONDITIONS AS SOON AS POSSIBLE
With the PC-BIPAP, PC-APRV, VC-MMV and AutoFlow option, your patients breathe freely during mechanical ventilation. This highly sensitive system encourages your patients to breathe at any time during the ventilation cycle and at any pressure level.

Optimizing gas distribution, avoiding barotrauma
PC-BIPAP and AutoFlow deliver air with decelerating flow. This means that slow areas of the lung have enough time for effective gas exchange while fast areas are not overdistended. By avoiding barotrauma and optimizing gas distribution within the lung, this strategy makes an important contribution to protective ventilation.

- The improvement of gas exchange is the primary goal of any ventilation strategy in critically ill patients.
- Spontaneous breathing has inherent advantages that lead to an increase in alveolar recruitment and pulmonary perfusion.
- Highly homogeneous gas distribution within the lungs, together with stable hemodynamics, lead to improved organ oxygenation.

Pulmonary mechanics can often change during the course of treatment, making the continuous adjustment of ventilation parameters necessary. The Dräger AutoFlow option offers automatic flow and pressure regulation in combination with the VC-AC, VC-CMV, VC-SIMV and VC-MMV ventilation modes. The pressure is adjusted according to Compliance values, while the flow profile reacts to changes in Resistance. The result is a homogeneous gas distribution with the lowest possible ventilation pressures and guaranteed minute volumes. Local shear forces are reduced and dead space ventilation is largely avoided. Because manual adjustments are no longer necessary, ICU staff saves valuable time.
OPTIONS FOR SPONTANEOUS BREATHING

VC-MMV facilitates that the patient always receives at least the set minute volume MV. The patient can always breathe spontaneously at PEEP level.

As patient activity increases, VC-MMV automatically and gradually reduces the number of time cycled strokes.

Therefore, it can be used well to speed up weaning of uncomplicated postoperative patients. In combination with AutoFlow, the pressure is reduced in accordance with the contribution of the patient to the set tidal volume. VC-MMV with AutoFlow allows automatic weaning by frequency and pressure.

Weaning with the Savina 300 in PC-BIPAP mode is continuous – from the moment of intubation until the patient is extubated. The decisive advantage of this mode is the smooth, automatic transition between mechanical ventilation and natural, spontaneous breathing in a single mode. It’s no longer necessary to manually switch between modes, which simplifies the weaning process and increases the efficacy of therapy. The patient is motivated to assume the work of breathing as soon as possible, further accelerating recovery.

PC-APRV may offer potential clinical advantages for ventilator management of acute lung injury/acute respiratory distress syndrome and may be considered as an alternative “open lung approach” to mechanical ventilation.

standard in Evita® V300

References
2. Baum, Benzer, Putensen, Koller, Putz. Anaesthetists 38, 452 - 458, 1999

The options PC-BIPAP, PC-APRV, VC-MMV and AutoFlow provide the next step in protective lung ventilation. They give your patients room to breathe, encourage them to progress and adjust automatically to changes in pulmonary mechanics. For your patients, this means less stress and quicker recovery.

For ICU staff, workflow is simplified, saving both valuable time and effort.
TECHNICAL DATA

PC-BIPAP
Pressure Control-Biphasic Positive Airway Pressure, spontaneous breathing under continuous pressure with two different pressure levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Savina® 300 Select / Savina® 300 Classic</th>
<th>Evita® V300</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPEP</td>
<td>1 to 99 mbar / 1 to 99 mbar</td>
<td>1 to 95 mbar (or hPa or cmH₂O)</td>
</tr>
<tr>
<td>∆P<sub>supp</sub></td>
<td>0 to 50 mbar / 0 to 50 mbar</td>
<td>0 to 50 mbar (or hPa or cmH₂O)</td>
</tr>
<tr>
<td>Ti</td>
<td>0.2 s to 10 / 0.2 s to 10</td>
<td>0.1 to 10 s</td>
</tr>
<tr>
<td>RR</td>
<td>2 /min to 80 /min / 2 /min to 80 /min</td>
<td>Adults: 0.5 to 98/min, pediatric patients/neonates 0.5 to 150/min</td>
</tr>
<tr>
<td>FlowAcc</td>
<td>5 to 200 mbar/s / 5 to 200 mbar/s</td>
<td>Adults/pediatric patients 0 to 2 s, neonates 0 to 1.5 s</td>
</tr>
</tbody>
</table>

PC-APRV
Pressure Control-Airway Pressure Release Ventilation, spontaneous breathing under continuous positive airway pressure with brief pressure releases

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Savina® 300 Select / Savina® 300 Classic</th>
<th>Evita® V300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiratory time Thigh</td>
<td>0.2 to 22.0 s / ---</td>
<td>0.1 to 30 s</td>
</tr>
<tr>
<td>Expiratory time Flow</td>
<td>0.1 to 22.0 s / ---</td>
<td>0.05 to 30 s</td>
</tr>
<tr>
<td>Inspiratory pressure Phigh</td>
<td>1 to 95 mbar (or hPa or cmH₂O) / ---</td>
<td>1 to 95 mbar (or hPa or cmH₂O)</td>
</tr>
<tr>
<td>Expiratory pressure Flow</td>
<td>1 to 95 mbar (or hPa or cmH₂O) / ---</td>
<td>0 to 50 mbar (or hPa or cmH₂O)</td>
</tr>
</tbody>
</table>

AutoFlow
Available in conjunction with all volume controlled ventilation modes VC-CMV, VC-AC, VC-SIMV and VC-MMV (optional)

- Automatic flow adjustment and ventilation pressure adjustment to the smallest possible value with constant tidal volume.
- Spontaneous breathing at any time during the respiration cycle.

Ordering Information

<table>
<thead>
<tr>
<th>Option</th>
<th>Savina® 300 Select / Savina® 300 Classic</th>
<th>Evita® V300</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-BIPAP</td>
<td>84 17 800 / 84 14 150</td>
<td>84 20 400</td>
</tr>
<tr>
<td>Retrofit Kit</td>
<td>84 14 150 / 84 14 150</td>
<td>84 20 420</td>
</tr>
<tr>
<td>AutoFlow</td>
<td>84 17 800 / 84 14 150</td>
<td>84 20 400</td>
</tr>
<tr>
<td>PC-APRV</td>
<td>84 14 150 / 84 14 150</td>
<td>84 20 420</td>
</tr>
<tr>
<td>VC-MMV</td>
<td>84 17 800 / 84 14 150</td>
<td>84 20 400</td>
</tr>
<tr>
<td>Retrofit Kit</td>
<td>84 14 150 / 84 14 150</td>
<td>84 20 420</td>
</tr>
</tbody>
</table>

*** standard in Evita® V300

Not all products, features, or services are for sale in all countries. Mentioned Trademarks are only registered in certain countries and not necessarily in the country in which this material is released. Go to www.draeger.com/trademarks to find the current status.