Mit dem Pulmotor fing es an
Die Geschichte der maschinellen Beatmung

Ernst Bahns
Mit dem Pulmotor fing es an –
Die Geschichte der maschinellen Beatmung

Ernst Bahns
Inhaltsverzeichnis

Eine Geschichte von mehr als hundert Jahren 8

Die Geschichte der Beatmungstechnik 10
 Die „Stunde Null“ in der maschinellen Beatmung – Der „Ur-Pulmotor“ 10
 Das Steuerprinzip des Ur-Pulmotors 12
 Die Weiterentwicklung des Pulmotors durch Bernhard Dräger 14
 Vom Prototypen zur Serienreife – Ein neuartiges Steuerprinzip 16
 Das Pulmotorprinzip (1) 18
 Das Pulmotorprinzip (2) 20
 Der Pulmotorstreit (1) 22
 Der Pulmotorstreit (2) 24
 Weiterentwicklung des Pulmotor – Die Pulmotordose 26
 Der Pulmotor im klinischen Einsatz 28
 Ein neuer Weg – Die Wechseldruckbeatmung mit der Eisernen Lunge 30
 Kreativität und Improvisationsgeist in der Nachkriegszeit 32
 Anfänge in der Intensivbeatmung – Die Assistoren 34
 Der Weg zur modernen Intensivbeatmung – Die Spiromaten 36
 Intensivbeatmung im stetigen Fortschritt – Vom Spiromat zur EV-A 38
 Moderne Intensivbeatmung – Die Evita-Familie 40
 Die neue Generation der Evita Familie 42
 Eine neue Familie in der Dräger Beatmung: Savina 44
 Die nicht-invasive Beatmung mit Carina 46
 Die Beatmung kleiner Patienten – Der Weg zum Babylog 48
 Intensivbeatmung in der Neonatologie – Das Babylog 8000 50
 Vom Pulmotor zum Oxylog 52
 Die Oxylog-Familie – Der Weg in die moderne Notfallbeatmung 54

Die Rolle der Therapeuten 56
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Geschichte der Beatmung</td>
<td>58</td>
</tr>
<tr>
<td>Das Beatmungsgerät im klinischen Einsatz – Eine Übersicht</td>
<td>58</td>
</tr>
<tr>
<td>Atmung und Beatmungsverfahren – Ein grundsätzlicher Unterschied</td>
<td>60</td>
</tr>
<tr>
<td>Drei Probleme der maschinellen Beatmung</td>
<td>62</td>
</tr>
<tr>
<td>Druckbegrenzte Beatmung mit dem UV-1</td>
<td>64</td>
</tr>
<tr>
<td>Neue Beatmungstechnik mit EV-A</td>
<td>66</td>
</tr>
<tr>
<td>Einfach und offen für Spontanatmung – Druckkontrollierter BIPAP</td>
<td>68</td>
</tr>
<tr>
<td>Optimaler Druck und offen für Spontanatmung – volumenkontrollierter AutoFlow®</td>
<td>70</td>
</tr>
<tr>
<td>Druckunterstützte Spontanatmung</td>
<td>72</td>
</tr>
<tr>
<td>Die Anpassung der Unterstützung an die Spontanatmung</td>
<td>74</td>
</tr>
<tr>
<td>Die Regelung der Druckunterstützung durch den Patienten</td>
<td>76</td>
</tr>
<tr>
<td>Die Problematik der Geräteverbindung zum Patienten</td>
<td>78</td>
</tr>
<tr>
<td>Besonderheiten der Früh- und Neugeborenen-Beatmung</td>
<td>80</td>
</tr>
<tr>
<td>SmartCare®/PS</td>
<td>82</td>
</tr>
<tr>
<td>Tendenzen in der Entwicklung der Beatmungsverfahren – Fazit</td>
<td>84</td>
</tr>
<tr>
<td>Tendenzen in der Entwicklung der Beatmungsverfahren – Ausblick</td>
<td>86</td>
</tr>
<tr>
<td>Vom Messinstrument zum Beatmungsmonitor</td>
<td>88</td>
</tr>
<tr>
<td>Von der Momentaufnahme zur Trendanalyse</td>
<td>90</td>
</tr>
<tr>
<td>Der Wert des grafischen Monitorings</td>
<td>92</td>
</tr>
<tr>
<td>Beatmungsmonitoring in einer neuen Zeit</td>
<td>94</td>
</tr>
<tr>
<td>Beatmungsdiagnostik mit neuen Bildern</td>
<td>96</td>
</tr>
<tr>
<td>Leistungsumfang und Bedienung</td>
<td>98</td>
</tr>
<tr>
<td>Leistung stark, Bedienung einfach – ein Widerspruch?</td>
<td>100</td>
</tr>
<tr>
<td>Bedienung einheitlich – eine Vision?</td>
<td>102</td>
</tr>
<tr>
<td>Vom Beatmungsgerät zum Beatmungsmodul</td>
<td>104</td>
</tr>
<tr>
<td>Vom Modul zum System Akutmedizin</td>
<td>106</td>
</tr>
<tr>
<td>Akutmedizin als Ganzes gesehen</td>
<td>108</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>110</td>
</tr>
</tbody>
</table>
Eine Geschichte von mehr als hundert Jahren

Die Geschichte der Beatmung ist für Dräger mehr als ein nüchterner chronologischer Ablauf – die Geschichte der Beatmung ist eng verbunden mit der Geschichte der Familie Dräger.

Mit der vorliegenden Broschüre wollen wir jedoch nicht nur von der Vergangenheit der Beatmung berichten, sondern wir wollen auch einen Beitrag zur Diskussion um die Zukunft der Beatmung leisten. Wir wollen Ihnen deshalb die Beatmung so beschreiben, dass nicht nur das medizinische und technische Fachpersonal, sondern alle Interessierten etwas davon mitnehmen können und sich an der Diskussion um die künftige Entwicklung der Beatmung beteiligen können.

Mit dem Anspruch, auch denjenigen die Beatmung zu veranschaulichen, die nicht tagtäglich damit zu tun haben, ist es unumgänglich, Grundlagen darzustellen, die dem sachkundigen Leser bereits geläufig sind. Der Einfachheit halber beschränkt sich die vorliegende Fibel ausschließlich auf die Beatmung aus dem Hause Dräger.

Die „Stunde Null“ in der maschinellen Beatmung – Der „Ur-Pulmotor“

Heinrich Dräger nimmt in Gegenwart seiner Familie eine Patentschrift vom Postboten entgehen
Das Steuerprinzip des Ur-Pulmoters

Für die Umschaltung zwischen Einatmung und Ausatmung setzte Heinrich Dräger in seinem Ur-Pulmotor eine Mechanik ein, die ihm als gelerntem Uhramacher recht geläufig war: Die Steuerung des Beatmungsmusters erfolgte damals durch ein modifiziertes Uhrwerk mit Kurvenscheibe.

Die Weiterentwicklung des Pulmotors durch Bernhard Dräger

Der „Ur-Pulmotor“ war sicherlich ein bahnbrechendes Konzept, blieb aber auf der Stufe eines Versuchsmodells, das für die Praxis noch nicht geeignet war. Es gab nämlich noch zwei Unzulänglichkeiten, die Heinrich Dräger bereits bei der Entwicklung erkannt und dokumentiert hatte (7). Zum einen bewirkte seine Konstruktion eine erhebliche Rückatmung des ausgeatmeten Gases und zum anderen konnte durch die rigide Uhrwerk-Steuerung die Beatmung nicht an den Patienten angesessen werden. Die Abhilfe dieser Unzulänglichkeiten überließ Heinrich Dräger seinem Sohn Bernhard und dem Ingenieur Hans Schröder (8).

Bernhard Dräger in seinem Büro (1904)

Heinrich und Bernhard Dräger
Bernhard Dräger in der Versuchswerkstatt
Vom Prototypen zur Serienreife –
Ein neuartiges Steuerprinzip

Serienfertigung des Pulmotors
Das Pulmotorprinzip (1)

Der in den vorherigen Seiten bereits grob skizzierte Pulmotor soll im Folgenden nun detailliert in seinem Aufbau und seiner Funktion beschrieben werden. Technische Innovationen des Pulmotors sind die „Druck- und Saugdüse“ zur Erzeugung des Beatmungsdruckes und der Steuerungsmechanismus zum Umschalten zwischen Einatemphasen und Ausatemphasen.

Schematische Darstellung des druckgesteuerten Pulmotors
Das Pulmotorprinzip (2)

In der Weiterentwicklung von Hans Schröder wird das Injektorprinzip aus dem Ur-Pulmotor übernommen. Der Vierwegehahn und das Uhrwerk sind jedoch durch eine neue Steuermechanik ersetzt. Die Grafik der vorherigen Seite zeigt den Aufbau im Detail.

Die Steuermechanik besteht hier aus einem Lederbalg, der an das Rohrsystem angeschlossen ist. Dieser Balg dehnt sich bei Überdruck aus und schaltet dabei einen Steuermchanismus um.

Das Ventilsystem ist weiterhin so konstruiert, dass während der Ausatemphase das Rohrsystem nach außen geöffnet wird, so dass das Gas frei abströmen kann. Ein weiterer, so genannter Bremsbalg sorgt für eine mechanische Dämpfung bei der Umschaltung der Atemphasen.
Pulmotor auf Stativ mit Zusatzvorrichtung zur Anreicherung der Atemluft mit Kohlendioxid zur Anwendung im Operationssaal
Der Pulmotorstreit (1)

Hinter dieser Öffentlichkeitsarbeit von Dräger stand ein klares Interesse: Man wollte der Öffentlichkeit nachweisen, dass die Wiederbelebung mit maschineller Beatmung einer manuellen Methode gegenüber überlegen war. Und man setzte sich zur Wehr gegen Kritik am Prinzip der Überdruckbeatmung des Pulmotors, eine Kritik, die in den zwanziger Jahren des vorigen Jahrhunderts von klinischen Anwendern vorgetragen wurde und die im so genannten „Pulmotorstreit“ gipfelte (13, 14, 16).

Einsatz des Pulmotors bei einem Badeunfall – zeitgenössische Grafik von 1913
Der Pulmotorstreit (2)

Der Pulmotorstreit ist jedoch nicht nur wegen seines Ergebnisses von historischer Bedeutung, sondern ein weiterer Gesichtspunkt erscheint interessant. Es ist das taktische und strategische Verhalten von Dräger im Pulmotorstreit.

In den Drägerheften der damaligen Zeit (12, 13, 14) ist nachzulesen, welchen Aufwand Dräger trieb, um Bedenken gegen die Wirksamkeit des Pulmotors auszuräumen und Vermutungen über Gefährdungen entgegenzutreten. Derartiger Aufwand ging über rein kommerzielle Interessen weit hinaus. Es war der Anspruch aus unternehmerischer Sicht nachzuweisen, dass man das Richtige tut.
Es ging hier also nicht nur um das Image eines Produktes, vielmehr ging es um den eigenen Namen. Dieses vertrat man gegenüber allen Beteiligten – den Kunden, den Verbänden und den Aufsichtsbehörden und wenn erforderlich, wurde sachliche Kritik in technische Weiterentwicklungen umgesetzt.

Diese Strategie war mehr als das, was man damals „Absatzförderung“ nannte – so etwas nennt man heute Marketing.
Weiterentwicklung des Pulmotor – Die Pulmotordose

Mit der Pulmotordose war die Umschaltmechanik nun so kompakt geworden, dass man sie aus dem Grundgerät auslagern und patientennah einsetzen konnte. Die beiden Faltenschläuche, die zum einen unhandlich waren und zum anderen im Laufe der Zeit oft undicht wurden, waren damit überflüssig. Der Patient wurde beim neuen Pulmotor über einen 1,5 Meter langen Druckschlauch mit dem Grundgerät verbunden. Somit hatte man beim Geräteeinsatz eine wesentlich bessere Bewegungsfreiheit.

Neben der etablierten Kofferversion, die unter der Modellbezeichnung PK 2 eingeführt wurde, stand die Tornisterversion PT 1 zur Verfügung. Letztere wog nur noch 13 kg und das war lediglich etwas mehr als die Hälfte des Gewichtes der früheren Kofferversionen des Pulmotors. Die Modelle PK 60 und PT 60 bzw. PT 61 waren Weiterentwicklungen, bei denen eine modifizierte Pulmotordose zum Einsatz kam. Sie ermöglichte eine Beatmung mit reinem Sauerstoff ohne angesaugte Umgebungsluft. Somit war es mit den neuen Modellen erstmals möglich, auch in toxischer Atmosphäre zu beatmen.
Der Pulmotor im klinischen Einsatz

Der Pulmotor repräsentierte über mehrere Jahrzehnte eine eigenständige Produktlinie. Sein wesentlicher Einsatzbereich war dabei die Notfallbeatmung. Darüber hinaus wurde das Pulmotorprinzip in verschiedenen Beatmungsgeräten meist unter einem anderen Namen eingesetzt.

Ein neuer Weg –
Die Wechseldruckbeatmung mit der Eisernen Lunge

Mit den Eisernen Lungen konnte die Überlebensrate bei Atemlähmungen während einer Polioerkrankung deutlich erhöht werden. Als Nachteil galt allerdings der große Platzbedarf und die erschwerte Pflege der Patienten.
Kreativität und Improvisationsgeist in der Nachkriegszeit

Die Pioniere, die anfangs in Eigeninitiative die ersten Eisernen Lungen der Nachkriegszeit bastelten, fanden im Drägerwerk ihre Partner. Mit ihrer jahrzehntelangen Erfahrung bei der Entwicklung von Rettungsgeräten für Bergbau und Tauchtechnik brachten die Ingenieure die Ideen in der Wechseldruckbeatmung zur Serienreife.

Eiserne Lungen waren nur vorübergehend bedeutend, denn ein neuer Impuls sorgte für die „Renaissance“ der Überdruckbeatmung zu Lasten der Wechseldruckbeatmungsgeräte. Dieser Impuls kam diesmal nicht aus der Technik, sondern aus der klinischen Anwendung.
Anfänge in der Intensivbeatmung – Die Assistoren

Für die beiden Konzepte entwickelte Dräger verschiedene Gerätereihen, die zeitweilig parallel existierten. In der druckgesteuerten Beatmung wurde mit der Gerätereihe der Assistoren das erfolgreiche Prinzip der Pulmotoren weiterentwickelt (10). Gemeinsames Merkmal der Assistoren war neben der Drucksteuerung die Möglichkeit, Spontanatmung zu assistieren, d.h. der Patient konnte durch seine Spontanatembemühungen den maschinellen Beatmungshub auslösen.
Die Gerätereihe der Assistoren zur druckgesteuerten Beatmung

Der Weg zur modernen Intensivbeatmung – Die Spiromaten

Mit den Assistoren hatte sich das Anwendungsgebiet der Beatmung bereits erheblich erweitert. Neben der Beatmung bei Polioerkrankungen etablierten sich die postoperative Beatmung und die Inhalationstherapie bei chronischen Lungenerkrankungen. Trotz dieser Erweiterung des Anwendungsspektrums blieb die maschinelle Beatmung eine relativ einfache Hilfsmaßnahme.

Moderne Beatmung geht jedoch einen Schritt weiter. Sie will nicht nur die Zeit der Atemstörung überbrücken, sondern die Beatmungsform an die Ursache der Störung anpassen und wenn möglich diese Störung gezielt behandeln. Moderne Beatmung ist Beatmungstherapie.

Der Anspruch einer gezielten Intensivtherapie stellte neue Anforderungen an die Beatmungsgeräte. Die bereits erwähnte Kontrolle über das ventilierte Volumen gewann dabei zunehmend an Bedeutung. Weiterhin sollte der zeitliche Verlauf der Beatmung durch Einstellparameter veränderbar sein und nicht nur von der Lungenmechanik des Patienten abhängen. Gefordert war die zeitgesteuerte volumenkontrollierte Beatmung.

Beatmung eines tracheotomierten Patienten mit dem Spiromat 661
Intensivbeatmung im stetigen Fortschritt – Vom Spiromat zur EV-A

Intensivbeatmung mit EV-A. Darstellung von Beatmungskurven auf dem integrierten Bildschirm
Moderne Intensivbeatmung –
Die ersten Generationen der Evita-Familie

Zunächst kam 1997 die Evita 2 *dura* mit einem eingeschränkten Leistungsumfang verglichen mit Evita 4. Im Jahre 2002 wurde die EvitaXL eingeführt, die einen deutlich größeren Leistungsumfang im Vergleich zu Evita 4 hatte. Die drei Mitglieder der Evita-Familie unterschieden sich jedoch nicht nur im Leistungsumfang, sondern auch in ihrer Innovationsrate, wobei die EvitaXL wiederum eine Spitzenstellung einnahm. Innovationen wie das automatische Entwöhnungsprogramm SmartCare sowie das Messmanöver Low-Flow-Loop blieben nach ihrer Einführung exklusives Leistungsmerkmal der Evita XL.

EvitaXL. Frei konfigurierbares integriertes Monitoring und Bedienung über einen Farbbildschirm mit Touch-Screen-Technologie
Die neue Generation der Evita-Familie

In einem jedoch bleibt sie konservativ: Sie behält das bewährte Bedienkonzept der Evita bei und erspart den Anwendern die Umstellung auf eine neue Bedienphilosophie. Und noch ein weiteres Merkmal behält die Evita V500 bei: Es ist der Name Evita, der sich mittlerweile als Synonym einer erfolgreichen Dräger Beatmung etabliert hat.
Im Jahr 2013 erhielt die Evita V500 eine „kleine Schwester“. Mit weitgehend gleicher Hardware unterscheidet sich die Evita V300 von ihrer großen Schwester durch die Möglichkeit, die Ausstattung frei zu wählen. So kann bei der Erstbeschaffung ein geringer Umfang an Leistungsmerkmalen gewählt werden, der sich später gegebenenfalls bis nahezu auf das Niveau der Evita V500 hochrüsten lässt.
Eine neue Familie in der Dräger Beatmung: Savina

Die Technologie der Atemgasdosierung über Verdichter erfüllt bereits im Jahr 2000 hohe Ansprüche an die Qualität der Beatmung und übertrifft diese sogar zum Teil. Dies gilt insbesondere für die Spontanatmung während der maschinellen Beatmung. Im grafischen Monitoring hingegen waren Weiterentwicklungen erforderlich, um einem höheren Anspruch gerecht zu werden.

Die nicht-invasive Beatmung mit Carina

In den Industrieländern differenzierten sich die Anwendungsbereiche für Beatmungsgeräte immer weiter und es kamen neue Gebiete zur klassischen Notfall- und Intensivbeatmung hinzu.

Im außerklinischen Bereich entstand der Bereich Home-Care, in dem Beatmungsgeräte mit spezifischen, meist geringeren Anforderungen im Vergleich zur klassischen Intensivmedizin zum Einsatz kommen. Heimbeatmungsgeräte werden nicht nur vom medizinischen Fachpersonal, sondern in Teilfunktionen auch von Laien bedient.

In der Klinik etablierte sich neben der klassischen Intensivmedizin gegen Ende des vorigen Jahrhunderts zunächst im anglo-amerikanischen Raum der Sub-Acute-Care Bereich. Auch dort wurden kostengünstigere Beatmungsgeräte mit einem geringeren Umfang an Leistungsmerkmalen in den Beatmungsverfahren und in der Überwachung gefordert.

Für diese beiden Segmente, zunächst im Home-Care und später im Sub-Acute-Care Bereich, entwickelte Dräger die Gerätefamilie Carina. Das Heimbeatmungsgerät Carina home wurde bis zum Jahr 2008 überwiegend im deutschen Markt angeboten.

Nach dem Rückzug aus dem Heimbeatmungs- markt konzentrierte sich Dräger mit der Carina ausschließlich im Bereich Sub-Acute-Care.

Damit leistet Carina alles, was für die Beatmung eines Patienten mit stabilem und unkritischem Krankheitsverlauf erforderlich ist. Darüber hinaus bringt Carina einen Vorzug mit, den hoch ausgestattete Intensivbeatmungsgeräte vermissen lassen: Sie kann aufgrund ihres geringen Gewichts von 5,5kg leicht mit einer Hand getragen werden.
Die Beatmung kleiner Patienten – Der Weg zum Babylog

Intensivbeatmung in der Neonatologie – Babylog 8000 und Babylog VN 500

Das Babylog 8000 mit dem neuen Konzept der volumenorientierten Beatmung von Frühgeborenen ist nach seiner Einführung der Maßstab auf vielen Kleinkinder-Intensivstationen auf der ganzen Welt.

Mit dem neuen Funktionsprinzip war nun die zeitgesteuerte und volumenkontrollierte Beatmung auch in der Notfallmedizin möglich. Das Minutenvolumen konnte jetzt direkt am Gerät eingestellt werden und es blieb konstant im Laufe der Beatmung. Die Beatmungsfrequenz konnte ebenfalls stufenlos am Gerät eingestellt und die Beatmung damit einer Reanimation angepasst werden. Stenosen konnten direkt an einem Beatmungsdruckmesser erkannt werden – beim Pulmotor war man in diesem Fall darauf angewiesen, dass jemand das schnelle Umschalten, das so genannte „Geräteklappern“, richtig interpretierte. Weiterhin verbrauchte die Steuerung gerade mal einen Liter Druck pro Minute und war damit erheblich sparsamer als der Pulmotor.
Die Oxylog-Familie –
Der Weg in die moderne Notfallbeatmung

Das Oxylog war für die Erstversorgung eines Patienten konzipiert und seine primäre Aufgabe war die Sicherung einer Vitalfunktion durch maschinelle Beatmung. Der Einsatz konzentrierte sich auf die Erstversorgung und den nachfolgenden Transport des Patienten zur stationären Behandlung, den so genannten Primärtransport. Dementsprechend war der Leistungsumfang auf rein kontrollierte Beatmung begrenzt und in der Überwachung stand lediglich ein Manometer zur Messung des Atemwegsdrucks zur Verfügung.

Nach der Geschichte der Notfallmedizin wollen wir in unserer Darstellung von hundert Jahren maschineller Beatmung nun den Blickwinkel ändern. In einer detaillierten Beschreibung der verschiedenen Gerätekonzepte haben wir gezeigt, was sich innerhalb der verschiedenen Gerätegenerationen in der Beatmungstechnik verändert hat.

Wir wollen nun nach diesem überwiegend technischen Ansatz die Frage stellen: *Was hat sich denn durch diese technische Entwicklung verändert?* Wir beginnen dabei mit den Anwendern und untersuchen hier die Frage, inwieweit sich die Rolle von Ärzten und Pflegepersonal in der mehr als hundertjährigen Geschichte der Beatmung gewandelt hat.
Die Rolle der Therapeuten

Zusammenfassend kann die in den vorherigen Seiten beschriebene Geschichte der Beatmungsgeräte grob in drei Phasen unterteilt werden: Erstens die einfache maschinelle Beatmung, zweitens die durch manuelle Korrekturmaßnahmen des Therapeuten optimierte Beatmung und drittens die Beatmung mit automatischer Anpassung an den Patienten.

Mit neuen Möglichkeiten einer automatischen Anpassung des Beatmungsgerätes an die physiologischen Gegebenheiten begann sich die Rolle des Therapeuten erneut zu verändern: Er wurde zunehmend von der „Maschinenbedienung“ entlastet.

Die automatische Anpassung an den Patienten beschränkte sich zunächst auf mechanische Veränderungen der Lunge: So konnte die EV-A durch entsprechende Steuerung der Atemgaslieferung auch bei einer Leckage, z.B. bei einer Fistel, beatmen. Eine verbesserte Anpassung der Beatmung an den atemenden Patienten ermöglichte Evita, indem sie die maschinelle Beatmung der physiologischen Atmung unterordnete und Spontanatmung auch während eines maschinellen

Das Beatmungsgerät im klinischen Einsatz – Eine Übersicht

Eine Anpassung der Beatmungsverfahren an die Physiologie und eine damit verbundene schonendere Beatmung wurde zunächst durch Hilfseinrichtungen erreicht, die die schädlichen Auswirkungen der Beatmung begrenzen konnten und vom fachkundigen Personal gezielt eingesetzt wurden. Erst seit jüngster Zeit gibt es Beatmungsverfahren, die eine automatische Anpassung der Beatmung an den Patienten erlauben.

Atmung und Beatmungsverfahren –
Ein grundsätzlicher Unterschied

Ältere Beatmungsgeräte waren somit „meilenweit“ von der Physiologie der Atmung entfernt. Kennzeichnend für die Entwicklung der Beatmungsverfahren ist die stetige Verringerung dieses Abstandes durch technische und medizinische Fortschritte, die sich gegenseitig bedingten.
Drei Probleme der maschinellen Beatmung

Die Annäherung der zeitgesteuerten maschinellen Beatmung an die physiologische Atmung wurde nicht in einem Zuge, sondern schrittweise geleistet. Bei jedem Schritt wurde jeweils ein Problem gelöst, das man sich mit der Umkehrung der Druckverhältnisse und durch technische Limitationen eingehandelt hatte.

Der zeitliche Verlauf des Atemgasflusses (Flow) zeigt die drei Phasen noch deutlicher. Die bereits erwähnten drei Probleme können mit den umseitig dargestellten Beatmungskurven erläutert werden.

Die Lösungen der drei Probleme wurden, wie bereits erwähnt, zu verschiedenen Zeiten entwickelt. Als erstes Problem wurden die Druckspitzen in Angriff genommen.

*PEEP = Positive End Expiratory Pressure
Druckbegrenzte Beatmung mit dem UV-1

Die Anästhesisten kennen dieses Problem bereits seit geraumer Zeit. Sie vermeiden Druckspitzen in der manuellen Balgbeatmung durch eine geschickte Kontrolle des Beatmungsdruckes: Mit viel Gefühl drücken sie auf den Beatmungsbalg, damit sie zu keinem Zeitpunkt die Lunge durch einen zu hohen Atemwegsdruck überdehnen. In der maschinellen Beatmung wurde das Problem der Druckspitzen durch ein technisches Prinzip gelöst, das die erfahrene Hand des Anästhesisten gewissermaßen kopierte: Es ist das Prinzip der Balgbeatmung mit einstellbarem Arbeitsdruck, das beim UV-1 zum Einsatz kam.

Neue Beatmungstechnik mit EV-A

Die konventionelle druckkontrollierte Beatmung stellte noch keine zusätzlichen Ansprüche an die Technik der Beatmungsgeräte. Sie konnte in solider Qualität mit der beschriebenen Balgbeatmung realisiert werden.

Die neue Technologie brachte die maschinelle Beatmung trotz ihres enormen Potentials zunächst nur einen kleinen Schritt vorwärts: Mit ihr konnte die EV-A erstmalig trotz einer Leckage den PEEP aufrecht erhalten. Die Beatmungskurven zeigen die Leckagekompensation deutlich am Verlauf des Flows in der Exspirationsphase.

Einfach und offen für Spontanatmung –
Druckkontrollierter BIPAP*

In der konventionellen maschinellen Beatmung hält das Beatmungsgerät das Exspirationsventil fest verschlossen, ähnlich einer kräftigen Hand, die einen Schlauch verschließt. Im „Offenen System“ hingegen wird das Exspirationsventil feinfühlig geregelt ähnlich wie bei einer sensiblen Hand, die mit Fingerspitzengefühl den Durchfluss regelt. Das Prinzip des „Offenen Systems“ ist die technische Grundlage für die Realisierung des neuen druckkontrollierten Beatmungsverfahrens BIPAP.

Anhand der Flowkurve kann die jederzeit verfügbare Spontanatemmöglichkeit erkannt werden: Zum ersten Mal ist auch während der maschinellen Inspirationsphase eine Ausatmung möglich.

* Lizensiertes Warenzeichen, BIPAP = Biphasic Positive Airway Pressure
Optimaler Druck und offen für Spontanatmung – volumenkontrollierter AutoFlow®

Nach wie vor war das Problem der Druckspitzen in der Einatemphase einer volumenkontrollierten Beatmung nur unzureichend gelöst. Obgleich die Druckspitzen bereits mit der Druckbegrenzung des UV-1 beseitigt werden konnten, mussten sie im Verlauf einer Beatmung doch recht häufig nachgestellt werden. Eine manuell eingestellte Druckbegrenzung ist nämlich nur dann optimal, wenn die mechanischen Verhältnisse in der Lunge unverändert bleiben – und das ist in der Regel bei einer beatmeten Lunge nicht der Fall.

Vielmehr ändern sich die mechanischen Eigenschaften der Lunge: Sie kann erstens steifer oder elastischer werden – es ändert sich also die Elastizität, die in der Atemphysiologie als Compliance bezeichnet wird. Weiterhin kann sich der Strömungswiderstand in den Atemwegen vergrößern oder verringern. Die dabei zu Grunde liegende Größe ist der Atemwegswiderstand, der in der Atemphysiologie als Resistance bezeichnet wird.

Vergrößert sich z. B. die Compliance der Lunge und wird sie im Verlauf einer Therapie elastischer, dann reichen geringere Beatmungsdrücke, um das gewünschte Volumen zu liefern. Eine vergrößerte Compliance erfordert somit einen geringeren Druck, um gleiche Volumina zu liefern. Im Grunde genommen müsste der Therapeut Atemzug für Atemzug eine Messung der Compliance durchführen und danach rasch den geringstmöglichen Beatmungsdruck einstellen. Diesen Arbeitsaufwand könnte ihm das Beatmungsgerät ersparen, wenn es die Messungen der Compliance und die Einstellungen des minimalen Beatmungsdruckes automatisch durchführen würde.

Druckunterstützte Spontanatmung

Die Entwicklung druckunterstützter Verfahren begann erst zwanzig Jahre später als die der zeitgesteuerten Verfahren. Der Grund dieser Verspätung liegt am aufwändigen Steuerungsprinzip dieser Verfahren. Das Beatmungsgerät muss für einen druckunterstützten Hub nämlich zunächst erst einmal registrieren, wann der Patient einatmen will. Es muss dann blitzschnell das Geforderte liefern und es muss die Atemgaslieferung dann beenden, wenn der Patient dieses fordert. Das stellt hohe Anforderungen an das Beatmungsgerät, denn wenn die maschinelle Unterstützung von den Anforderungen des Patienten abweicht, dann kann das zusätzliche Atemarbeit und zusätzliche Belastung für den Patienten bewirken.

* Assisted Spontaneous Breathing
Die Anpassung der Unterstützung an die Spontanatmung

Die Regelung der Druckunterstützung durch den Patienten

Verzichtet man jedoch auf die unbedingte Sicherstellung der Ventilation durch die Einstellung von Ventilationsparametern und konzentriert sich darauf, den Patienten gezielt in den Problemen seiner unzureichenden Spontanatmung zu unterstützen, dann gibt es völlig neue Möglichkeiten. In diesem Fall übernimmt der Patient zunehmend die Verantwortung für die Ventilation der Lunge und der Anwender stellt nur noch sicher, dass das Beatmungsgerät die Spontanatmung des Patienten durch geeignete Atemgaslieferung hinreichend verstärkt.

* PAV = Proportional Assist Ventilation, ** PPS = Proportional Pressure Support
In der proportionalen Druckunterstützung wird der Druck geregelt nach einem gemessenen Volumen und Flow. Der Regelkreis ist dabei außerordentlich schnell: In wenigen Millisekunden werden die Messgrößen ermittelt und der Druck entsprechend korrigiert. Es wird also innerhalb eines Atemzyklusses mehr als hundert Mal der Druck geregelt und dem Bedarf des Patienten angepasst.

Die Problematik der Geräteverbindung zum Patienten

* NIV = Non Invasive Ventilation

* ATC = Atomatic Tube Compensation
Besonderheiten der Früh- und Neugeborenen-Beatmung

Die Beatmung von Früh- und Neugeborenen nimmt aus zwei Gründen eine Sonderstellung ein: zum einen gibt es spezifische klinische Probleme aufgrund einer unreifen Lunge, und zum anderen gibt es in der Neugeborenenbeatmung zusätzliche technische Herausforderungen.

Bei derartigen Herausforderungen ist es nicht verwunderlich, dass erst Ende der achtziger Jahre ein Beatmungsgerät eingeführt wurde, das sich den oben genannten Anforderungen stellte. Das Babylog 8000 führte als erstes Beatmungsgerät für Neugeborene ein integriertes Volumenmonitoring ein und erlaubte damit eine Diagnose der Lungenmechanik. Es hatte dazu eine patientennahe Flowmessung, mit der weiterhin zum einen eine automatische Leckagekompensation und zum anderen ein extrem sensibler Trigger zur Auslösung eines Atemhubes noch möglich war.

Mit der Einführung des Babylog VN500 wurde die Palette der Beatmungsverfahren erweitert und insbesondere die Hochfrequenzbeatmung erheblich verbessert. Das Beatmungsmonitoring und die Bedienung des Babylog VN500 erreichen durch einen großflächigen Grafikbildschirm mit Touchscreen Technologie den gleichen hohen Standard wie in der Beatmung von Erwachsenen.

* PSV = Pressure Support Ventilation

SmartCare/PS geht in der Entwöhnung ähnlich wie das klinische Personal vor. Zunächst wird eine Diagnose der Spontanatmung gestellt, und zwar auf Basis der drei Parameter Atemfrequenz, Tidalvolumen und endtidales CO₂. Bei unzureichender Spontanatmung wird automatisch die Druckunterstützung verändert, um den Patienten mit seiner Spontanatmung in einen stabilen Zustand zu führen. Ist dieser erreicht, so wird Schritt für Schritt die Druckunterstützung verringert bis zu einem Niveau, ab dem der Patient voraussichtlich ohne maschinelle Unterstützung weiteratmen kann. Auf diesem Niveau führt SmartCare/PS ein abschließendes Manöver durch, den so genannten Spontanatemversuch. Wenn dieser erfolgreich ist, dann wird dem Personal der Abschluss der Entwöhnung gemeldet.

* PS = Pressure Support
Die Rolle des Personals ähnelt im SmartCare/PS der Rolle eines Piloten bei einem eingeschalteten Autopiloten. So wie ein Flugzeugführer sich jederzeit ein Bild über Kurs, Geschwindigkeit und Flughöhe in ihrer automatischen Regelung machen kann, so kann das klinische Personal jederzeit Verlauf, Diagnose und automatisch durchgeführte Maßnahmen in einer SmartCare/PS-Anwendung einsehen. Und ähnlich wie ein Pilot kann das klinische Personal bei Bedarf manuell eingreifen.

Das Personal erfährt dabei eine deutliche Aufwertung: Entlastet von Routinehandlungen und gut informiert über den Ablauf des Prozesses, können sich Arzt und Pfleger vom Abwickler zum Gestalter der Entwöhnung entwickeln.

Diagnose der Spontanatmung und Maßnahmen zur Stabilisierung im SmartCare/PS.
Tendenzen in der Entwicklung der Beatmungsverfahren – Fazit

In der Entwicklung der Beatmungsverfahren können im Wesentlichen zwei verschiedene Tendenzen identifiziert werden: die Beatmung ist erstens patientenorientierter und zweitens anwenderorientierter geworden.

In der zeitgesteuerten Beatmung wurde als Hilfsparameter die Druckbegrenzung zur Verringerung einer mechanischen Belastung der Lunge eingesetzt. In der Spontanatmung wurde die Druck unterstützung eingeführt, um den Patienten in seiner Atemarbeit zu entlasten. In beiden Fällen, sowohl in der Druckbegrenzung als auch in der Druckunterstützung war die Technik noch relativ einfach. Die Anwendung war jedoch arbeitsaufwändig: Änderte sich die Lungenmechanik, dann musste der Therapeut in der Regel die Beatmung anpassen.

Tendenzen in der Entwicklung der Beatmungsverfahren – Ausblick

Ein Ausblick in die Zukunft der Beatmungsverfahren kann mit der Einführung von Wissensbasierten Systemen wie SmartCare/PS vorgenommen werden. Künftig wird es weniger darum gehen, Verfahren zu optimieren, als vielmehr darum, die Verfahren optimal einzusetzen. SmartCare/PS setzt die konventionelle Druckunterstützung ein – ist also vom Verfahren her eher konservativ. Das Neue an SmartCare/PS ist jedoch der standardisierte Einsatz eines Verfahrens nach festgeschriebenen Regeln. Damit stellen sich erhebliche Vorteile wie die Kostenersparnis durch Verkürzung der Entwöhungszeit sowie die mögliche Qualitätssicherung durch Standardisierung, in Aussicht.

Neue Gerätegenerationen wie die Evita V300 und Evita V500 sind hingegen mit ihrer Grundausstattung – also ohne zusätzliche Hardware – darauf vorbereitet, mit Wissenbasierten Systemen die Beamung zu automatisieren.
Werden aber künftige Anforderungen in der Beatmung eine Steuerung des Gerätes von außen erfordern, dann könnte dies die maschinelle Beatmung um einen zusätzlichen Bereich erweitern. Neben den eigenständigen Beatmungsgeräten könnten sich Systeme etablieren, bei denen eine zentrale Steuereinheit auf ein Beatmungsmodul zugreift. Den ersten Schritt in diesen neuen Bereich unternahm Dräger im Jahr 2006 mit der Vorstellung des Infinity® Acute Care System™.
Vom Messinstrument zum Beatmungsmonitor

Der vorherige Abschnitt befasste sich mit der Entwicklung der Beatmungsverfahren. Im Folgenden soll nun untersucht werden, wie sich parallel dazu das Beatmungsmonitoring entwickelt hat. Das Beatmungsmonitoring stellt das gesamte System zur Überwachung in der Beatmung dar. Es werden dabei sowohl Gerätefunktionen als auch der Zustand des Patienten überwacht.

Parallel zur Sensorik und Alarmierung hat sich die Anzeige der Beatmungsgeräte entwickelt. Einfache Zeigerinstrumente wurden durch Digitalanzeigen ergänzt oder ersetzt. Das Informationsangebot aus dem Beatmungsmonitoring wurde damit vielfältiger, aber die vielen Anzeigen überforderten bisweilen den Betreiber. Eine leichtere Informationsaufnahme wurde durch die Konzentration der Messwertanzeigen und Textmitteilungen auf einem zentralen Bildschirm erreicht.

Der zentrale Bildschirm ordnet jedoch nicht nur die verschiedenen Anzeigen und Meldungen, er ermöglicht eine völlig neue Form der Messwertdarstellung: Durch grafische Bildschirmdarstellung werden nicht nur aktuelle Werte, sondern auch deren zeitlicher Verlauf sichtbar.

Mit dem grafischen Monitoring können Verlaufsdarstellungen eines Beatmungshubes sichtbar gemacht werden. Die zur Erläuterung der Beatmungsverfahren im vorherigen Abschnitt beschriebenen Beatmungskurven können damit direkt am Beatmungsgerät dargestellt werden. Das mittlere Bild der Grafik auf der nächsten Seite gibt das Beispiel einer Beatmungsdruckkurve.

Mit den Beatmungskurven auf dem Bildschirm kann die Geräteeinstellung und deren Auswirkung auf den Patienten kontrolliert werden. Die Momentaufnahme der Beatmungskurven wird im modernen Beatmungsmonitoring durch die Darstellung längerfristiger Verläufe ergänzt.
Der Wert des grafischen Monitorings

Seit der Einführung des integrierten grafischen Beatmungsmonitorings in der EVA werden die Beatmungskurven zunehmend als Hilfsmittel zur Geräteeinstellung genutzt. So kann aus den Druck- und Flowkurven rasch erkannt werden, ob die eingestellten Atemphasen in Ordnung sind.

Beatmungskurven erlauben eine rasche Überprüfung der Geräteeinstellung und lassen Einstellfehler erkennen. Einstellwerte mit hoher klinischer Bedeutung, wie das I:E-Verhältnis, also das Zeitverhältnis von Inspirations- und Exspirationszeit, sowie die Flowzeit und die Plateaudruckzeit sind damit auf einem Blick erkennbar und müssen nicht mehr als Zahlenwerte zusammentragen werden.

Beatmungsmonitoring in einer neuen Zeit

Es stellt sich jetzt erneut die Frage, ob durch eine Optimierung der eigenständigen Beatmungsgeräte und Patientenmonitore eine Lösung für das Problem der Datenflut und Redundanz erreicht werden kann – und die Antwort ist wiederum: Ja – mit großem Aufwand. Durch die Angleichung der Datenpräsentation einer EvitaXL und eines Infinity Patientenmonitors ist das Problem zumindest teilweise gelöst worden.
Beatmungsdiagnostik, mit neuen Bildern

Ein ähnliches Prinzip findet sich im Beatmungsmonitoring mit Smart Pulmonary View. Dort sind lungenmechanische Kenngrößen wie Resistance und Compliance nicht nur durch Zahlenwerte dargestellt, sondern durch symbolische Grafiken.

In einem Modell des Atemapparats symbolisiert die Dicke der Thoraxwand die Compliance und die Verengung der Trachea die Resistance. Weitere symbolische Darstellungen erlauben einen schnellen Einblick in die Spontanatemtätigkeit: Das Verhältnis von Spontanatmung und maschineller Beatmung ist durch verschiedenfarbige Flächen symbolisiert und eine Bewegung des Zwerchfells zeigt an, dass der Patient einen maschinellen Hub ausgelöst hat.

Das bis hier dargestellte Beatmungsmonitoring ist vielfältig und komplex, zeigt aber immer nur die globale Lungenfunktion. Es kann regionale Unterschiede in der Lunge nicht erfassen und verschließt sich damit einer klinisch außerordentlich wichtigen Detailinformation. Denn es gibt zunehmend Hinweise darauf, dass zu hohe Beatmungsdrücke ein Überdehnen, zu niedrige Drücke dagegen ein Kollabieren bestimmter Lungenregionen verursachen können. Einen Einblick in die Funktion verschiedener Lungenareale erlaubt nun die Elektrische Impedanztomographie.

Leistungsumfang und Bedienung

In den folgenden Gerätegenerationen fand man Wege, um das Bedienkonzept zu vereinfachen. So belegte man in der EV-A einzelne Drehknöpfe mit zwei Funktionen, damit die Anzahl der Drehknöpfe nicht weiter stieg. Die Vereinfachungen erwiesen sich jedoch meist als „kosmetische“ Maßnahmen: Das Bedienkonzept sah vordergründig einfach aus – tatsächlich aber wurde die Bedienung komplizierter.

Die Entwicklung des Leistungsumfanges und der Bedienungselemente der Beatmungsgeräte. Weitere Erläuterungen siehe Text
Leistung stark, Bedienung einfach – ein Widerspruch?

Naturlich gab es neben den umseitig beschriebenen Rückschritten in der Entwicklung des Bedienkonzeptes auch bemerkenswerte Fortschritte, wie die Einführung des zentralen Bildschirmes als Kontrollinstrument für die vorgenommenen Einstellungen.

Wird gerade keine Einstellung vorgenommen, dann können alle Bedienelemente im Hintergrund verschwinden, und der Bildschirm wird zum reinen Beatmungsmonitor.

Bedienung einheitlich – eine Vision?

Der nächste Schritt in der Akutmedizin könnte somit Systeme etablieren, in denen die Grenzen der klassischen Geräte immer mehr aufgelöst werden und die Bedienung noch mehr vereinheitlicht wird. Medical Cockpits wie das C300, C500 und das C700, die zur Zeit noch als universelle Bedieneinheit eines Beatmungsgerätes oder eines Patientenmonitors eingesetzt werden, bekämen dann eine neue Funktion. Sie wären die zentrale Bedieneinheit in einem Arbeitsplatz der Akutmedizin, mit der sowohl die Beatmung als auch das Patientenmonitoring eingestellt wird.
Vom Beatmungsgerät zum Beatmungsmodul

In den ersten hundert Jahren ihrer Geschichte hat sich die maschinelle Beatmung durch technischen und medizinischen Fortschritt von einer kurzfristigen Notfallmaßnahme zu einem komplexen Bereich innerhalb der Akutmedizin entwickelt. Therapie, Diagnostik und Bedienkonzept eines modernen Beatmungsgerätes sind leistungsfähig, spezifisch auf verschiedene Einsatzbereiche optimiert und sie sind innovativ: Es wird in der konventionellen maschinellen Beatmung auf absehbare Zeit noch viel Neues mit klinisch relevantem Nutzen geben.

Ziel bei der Entwicklung der Carena war es, die einzelnen Geräte der Intensivstation in eine kompakte Geräteeinheit zu integrieren, die Anzeigen nach medizinischen Gesichtspunkten zu organisieren, die Bedienung auf einem zentralen Bildschirm zusammenzufassen und die Anzeigen auf das notwendige Minimum zu reduzieren. Die Carena hatte bereits eine Vernetzung der Komponenten in einem so genannten Local Area Network (LAN) und eine Datenverarbeitung in einem zentralen Rechner, dem so genannten Data Manager. Die Messwertdaten wurden in sinnvollen Gruppen zusammengefasst und so präsentiert, dass auf einen Blick eine Abweichung aus dem Normbereich erkannt werden konnte. Außerdem verfügte die Carena über ein zentrales Alarmmanagement.
Im Gegensatz zum Anästhesie-Arbeitsplatzkonzept Cicero erfuhr die Carena jedoch keine kommerzielle Verbreitung. Ein Grund dafür mag gewesen sein, dass für die einzelnen Teilbereiche wie z.B. Beatmung und Überwachung verschiedene Hersteller beteiligt waren. Beim Cicero waren die Anästhesieinnendosierung, Beatmung und Überwachung bereits Eigenentwicklungen aus dem Hause Dräger. Dort hatte man also nicht nur die Kompetenz für das Gesamtsystem, sondern auch die Kompetenz für die Teilbereiche, und das scheint wohl eine zwingende Voraussetzung für den Erfolg derartiger Systeme zu sein.
Vom Modul zum System Akutmedizin

Durchläuft diese Prozesskette nun verschiedene Abschnitte mit starren Abteilungsgrenzen, dann treten allgemein diejenigen Probleme auf, die im Einzelnen bereits auf den vorherigen Seiten für die Beatmung beschrieben wurden und an deren Lösung sich die Carena und Cicero bereits versuchten, ohne dabei jedoch die Grenzen der Arbeitsplätze zu überschreiten. Da ist zum einen die fehlende Standardisierung und das lückenhafte oder unübersichtliche Informationsangebot. Hinzu kommen Engpässe und Wartezeiten beim Durchlaufen der Abschnitte. Möglicherweise haben die Abschnitte eine unterschiedliche Gestaltung des Arbeitsplatzes, und wenn die Abschnitte räumlich weit voneinander getrennt sind, dann ergeben sich die spezifischen Probleme des Patiententransportes.

Es stellt sich nun wiederum die Frage, die bereits für die Zukunft des konventionellen Beatmungsgerätes gestellt wurde: Können die konventionellen Geräte und die Arbeitsplatzkonzepte innerhalb der gesamten Akutmedizin soweit optimiert werden, dass sie standardisiert in der Bedienung sind und ein standardisiertes Informationsangebot zur Diagnose bieten, dass sie ergonomisch angeordnet werden können und dass sie das Risiko des Transportes minimieren? Und die Antwort ist wiederum: Ja – mit großem Aufwand.
Der größere Aufwand der Anpassung stellt sich dabei nicht nur in der Entwicklung der Geräte, der Mehraufwand zeigt sich auch in deren täglichen Einsatz. Und der Aufwand zeigt sich in Kosten: zum einen in Investitionskosten und zum anderen in Personalkosten.
Akutmedizin als Ganzes gesehen

Das erste System, das sich nicht nur auf einzelne Modalitäten oder einzelne Arbeitsplätze innerhalb der Akutmedizin konzentrieren, sondern einen Schritt weiter gehen und die gesamte Akutmedizin umfassen wird, ist das 2006 vorgestellte Infinity Acute Care System (IACS). Die wesentlichen Leistungsmerkmale, die in diesem neuen System angestrebt wurden sind Integration, Standardisierung, Mobilität und zielführende Information. Diese Leistungsmerkmale können sich in Zukunft folgendermaßen entwickeln:

Das zweite Jahrhundert der maschinellen Beatmung wird sicherlich weitere Fortschritte in der Therapie und Überwachung bringen und die Entwicklungen der ersten hundert Jahre fortsetzen. In einem Gesichtspunkt jedoch beginnt die Geschichte wiederum mit der „Stunde Null“, so wie damals mit dem Ur-Pulmotor: Die Geschichte der neuen Akutmedizin, bei der die Standardisierung, Harmonisierung und Integration von Überwachung und Therapie allerhöchste Priorität haben, hat gerade erst begonnen.
Literaturverzeichnis

7 Dräger H. (1917) Das Werden des Pulmotors, Drägerhefte Nr. 57/58. 495 – 496.

8 Dräger H. Lebenserinnerungen von Heinrich Dräger , Alfred Jansen, Hamburg (Erstdruck 1914).

